-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinvG_stan_wrapper.py
206 lines (180 loc) · 6.97 KB
/
invG_stan_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python
from __future__ import (absolute_import, division, print_function,
unicode_literals, generators, nested_scopes, with_statement)
from builtins import (bytes, dict, int, list, object, range, str, ascii,
chr, hex, input, next, oct, open, pow, round, super, filter, map, zip)
import os
import tempfile
import sys
import math
import ProgramName
import TempFilename
import getopt
#from __future__ import print_function
from Pipe import Pipe
import pickle
from StanParser import StanParser
import numpy as np
import statistics
import math
# class RunStan:
# def __init__(self, simulated_data_file):
# self.simulated_data_file = simulated_data_file
# def __enter__(self):
# def __exit__(self ,type, value, traceback):
def writeInitializationFile(filename):
OUT=open(filename,"wt")
print("theta <- 1",file=OUT)
OUT.close()
def writeReadCounts(fields,start,numReps,varName,OUT):
print(varName,"<- c(",file=OUT,end="")
for rep in range(numReps):
print(fields[start+rep*2],file=OUT,end="")
if(rep+1<numReps): print(",",file=OUT,end="")
print(")",file=OUT)
def writeInputsFile(fields,filename):
Mreps=int(fields[1])
#filename='output.txt'
OUT=open(filename,"wt")
print("M <-",Mreps,file=OUT)
writeReadCounts(fields,2,Mreps,"A",OUT) # alt
writeReadCounts(fields,3,Mreps,"R",OUT) # ref
#print("sigma <-",sigma,file=OUT)
OUT.close()
def getBaseline(fields):
if(len(fields)>=5):
base_thetas=[]
Mreps=int(fields[1])
for rep in range(Mreps):
A = float(fields[2+rep*2])
R = float(fields[3+(rep)*2])
base = (A+1)/(R+1)
#abs_base = abs(base-1)
base_thetas.append(base)
med_base_theta=statistics.median(base_thetas)
true_theta = fields[-1]
return med_base_theta, true_theta
#with tempfile.NamedTemporaryFile() as output_file:
# with tempfile.NamedTemporaryFile() as init_file:
# with tempfile.NamedTemporaryFile() as input_file:# Write inputs file for STAN
def getFieldIndex(label,fields):
numFields=len(fields)
index=None
for i in range(7,numFields):
if(fields[i]==label): index=i
return index
def getMaxProb(thetas):
# 1. no transformation
p_less1 = len([i for i in thetas if i < 1])/len(thetas)
p_more1 = 1 - p_less1
max_prob1 = max(p_less1,p_more1)
# 2. transform thetas, and then calculate proportion
thetas[:] = [math.log2(x) for x in thetas]
p_less2 = len([i for i in thetas if i < 0])/len(thetas)
p_more2 = 1 - p_less2
max_prob2 = max(p_less2,p_more2)
#diff = [(x - 1)**2 for x in thetas]
#rmse = np.sqrt(np.mean(diff))
return max_prob1,max_prob2
def runVariant(model,fields,input_file,tmp_output_file,stan_output_file,init_file):
if(len(fields)>=5):
writeInputsFile(fields,tmp_output_file)
#writeInputsFile(fields,tmp_output_file)
writeInitializationFile(init_file)
cmd = "%s sample data file=%s init=%s output file=%s" % (model,tmp_output_file,init_file,stan_output_file)
#/data/reddylab/scarlett/1000G/software/cmdstan/examples/ase/ase sample data file=/data/reddylab/scarlett/1000G/software/cmdstan/examples/ase/tmp_output.txt init=/data/reddylab/scarlett/1000G/software/cmdstan/examples/ase/initialization_stan.txt output file=/data/reddylab/scarlett/1000G/software/cmdstan/examples/ase/output_theta.txt
#cmd = "%s sample data file=%s output file=%s" % (model,tmp_output_file,stan_output_file)
#print (cmd)
os.system(cmd)# Parse MCMC output
#output=Pipe.run(cmd)
parser=StanParser(stan_output_file)
thetas=parser.getVariable("theta")
med,_,_,_,_ = parser.getSummary("theta")
max_prob1,max_prob2 = getMaxProb(thetas)
# with open(stan_output_file,"rt") as IN:
# for line in IN:
# if(len(line)==0 or line[0]=="#"): continue
# fields=line.rstrip().split(",")
# numFields=len(fields)
# if(fields[0]=="lp__"):
# #printFields(fields,OUT)
# thetaIndex=getFieldIndex("theta",fields)
# continue
# theta=float(fields[thetaIndex])
# thetas.append(theta)
# #print("append")
# #thetas.sort()
return med, max_prob1,max_prob2
else:
return (None,None,None)
def getMedian(thetas):
# Precondition: thetas is already sorted
n=len(thetas)
mid=int(n/2)
if(n%2==0): return (thetas[mid-1]+thetas[mid])/2.0
return thetas[mid]
def getCredibleInterval(thetas,alpha):
halfAlpha=alpha/2.0
n=len(thetas)
leftIndex=int(halfAlpha*n)
rightIndex=n-leftIndex
left=thetas[leftIndex+1]
right=thetas[rightIndex-1]
return (left,right)
def summarize(thetas):
thetas.sort()
n=len(thetas)
median=getMedian(thetas)
(CI_left,CI_right)=getCredibleInterval(thetas,ALPHA)
print(median,CI_left,CI_right,sep="\t")
model=sys.argv[3]
in_path=sys.argv[4]+"/"
out_path="./output_pkl/"
inFile=sys.argv[1]
#inFile="g-50_h-5_d-50_t-1.txt"
#sigma=0.1
outfix=inFile.rsplit(".txt")[0]
import os.path
#out1 = out_path+"model_theta/"+str(outfix)+"_s-"+str(sigma)+".pickle"
out2 = out_path+"model_med/"+str(outfix)+".pickle"
out3 = out_path+"model_prob/"+str(outfix)+".pickle"
out4 = out_path+"model_prob2/"+str(outfix)+".pickle"
#out4 = out_path+"baseline_theta/"+str(outfix)+"_s-"+str(sigma)+".pickle"
import os
if (os.path.isfile(out4)) and (os.path.isfile(out2)) and (os.path.isfile(out3)):
print ("Already Processed"+str(outfix))
os._exit(0)
model = "/data/reddylab/scarlett/1000G/software/cmdstan/examples/"+str(model)+"/"+str(model)
tmpFile= "tmp_output."+sys.argv[2]+".txt"
initFile = "initialization_stan."+sys.argv[2]+".txt"
outFile= "stan_output."+sys.argv[2]+".txt"
input_file=in_path+inFile
tmp_output_file=out_path+tmpFile
init_file=out_path+initFile
stan_output_file=out_path+outFile
ALPHA=0.05
#
#model_theta_list = [] # 150,000
model_theta_med = [] # 150
model_med_prob = [] # 150
model_med_prob2 = []
#
baseline_theta_list=[] # 150
with open(input_file,"rt") as IN:
for line in IN:
fields=line.rstrip().split()
ID=fields[0]
#print(ID)
#med_base_theta, true_theta = getBaseline(fields)
#baseline_theta_list.append(med_base_theta)
med,prob,prob2=runVariant(model,fields,input_file,tmp_output_file,stan_output_file,init_file)
if med is not None:
#model_theta_list.extend(thetas)
model_theta_med.append(med)
model_med_prob.append(prob)
model_med_prob2.append(prob2)
#pickle.dump(model_theta_list,open(out_path+"model_theta/"+str(outfix)+"_s-"+str(sigma)+".pickle",'wb'))
pickle.dump(model_theta_med,open(out2,'wb'))
pickle.dump(model_med_prob,open(out3,'wb'))
pickle.dump(model_med_prob2,open(out4,'wb'))
#pickle.dump(baseline_theta_list,open(out_path+"baseline_theta/"+str(outfix)+"_s-"+str(sigma)+".pickle",'wb'))