-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathsdg11.R
455 lines (409 loc) · 17.9 KB
/
sdg11.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
library(wbgdata)
library(wbgcharts)
library(wbggeo)
library(wbgmaps)
library(ggplot2)
library(dplyr)
library(tidyr)
library(forcats)
library(readxl)
library(readr)
library(proj4)
library(stringr)
source("styles.R")
fig_sdg11_urban_rural_trends_region <- function(years = 1980:2016) {
indicators <- c(urban = "SP.URB.TOTL.IN.ZS", rural = "SP.RUR.TOTL.ZS")
df <- wbgdata(
wbgref$regions$iso3c,
indicators,
years = years,
indicator.wide = FALSE,
rename.indicators = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg11_urban_rural_trends_region.csv"
)
figure(
data = df,
plot = function(df, style = style_atlas()) {
iso3c_order <- df %>%
filter(indicatorID == "urban", date == max(years)) %>%
arrange(iso3c != "WLD", value) %>%
pull(iso3c)
df <- df %>% mutate(iso3c = fct_relevel(iso3c, iso3c_order))
facet_labeller <- as_labeller(str_wrap_lines(c(wbgref$regions$labels, WLD="World"),2,force=TRUE))
ggplot(df, aes(x = as.numeric(date), y = value, group = indicatorID, color = indicatorID)) +
geom_line(size = style$linesize) +
facet_wrap(~ iso3c, nrow = 1, labeller = facet_labeller) +
scale_color_manual(
values = style$colors$urban_rural,
labels = c(rural = "Rural", urban = "Urban")
) +
geom_text(
aes(
y = value + 10 * ifelse(indicatorID == "rural", 1, -1),
label = c(rural = "Rural", urban = "Urban")[indicatorID]
),
data = . %>% filter(iso3c == "SAS", date == min(years)),
family = style$family,
size = style$gg_text_size,
hjust = 0,
nudge_x = 0
) +
scale_y_continuous(limits = c(0, 100)) +
scale_x_continuous(breaks = range(years), expand = c(0,5)) +
style$theme() +
theme(
panel.spacing.x = unit(0.025, "npc"),
strip.text.x = element_text(hjust = 0.5, vjust=0)
)
},
aspect_ratio = 2,
title = "Since around 2008, the majority of the world's population has lived in urban areas. Only South Asia and Sub-Saharan Africa remain more rural than urban.",
subtitle = wbg_name(indicator = "Share of total population", denom = "%"),
source = "Source: UN Population Division. WDI (SP.URB.TOTL.IN.ZS; SP.RUR.TOTL.ZS)."
)
}
fig_sdg11_percent_slums_country_change <- function(years = c(2005, 2014), N_inc = 10, N_dec = 10) {
indicator <- "EN.POP.SLUM.UR.ZS"
df <- wbgdata(
wbgref$countries$iso3c,
indicator,
years = years,
indicator.wide = FALSE,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg11_percent_slums_country_change.csv"
)
# Calculate change over the period
changes <- df %>%
group_by(iso3c) %>%
arrange(date) %>%
summarise(change = last(value) - first(value)) %>%
arrange(change)
# Get top and bottom N
iso3c_inc <- tail(changes$iso3c, N_inc)
iso3c_dec <- head(changes$iso3c, N_dec)
df <- df %>%
filter(iso3c %in% c(iso3c_inc, iso3c_dec)) %>%
mutate(facet = ifelse(iso3c %in% iso3c_inc, "Top 10 percentage-point increases","Top 10 percentage-point decreases")) %>%
arrange(date)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(iso3c = fct_reorder2(iso3c, date == max(years), ifelse(iso3c %in% iso3c_dec, value, -value)))
p <- ggplot(df, aes(value, iso3c, color = as.factor(date), fill = as.factor(date), shape = as.factor(date))) +
geom_other_dotplot(aes(value, iso3c, group = paste0(facet, iso3c)), arrow = TRUE, size = style$point_size, stroke = style$point_stroke) +
scale_shape_manual(values = c(style$shapes$point, 99)) +
scale_color_manual(values = c(style$colors$spot.primary.light, style$colors$spot.primary)) +
scale_fill_manual(values = c(style$colors$spot.primary.light, style$colors$spot.primary)) +
scale_y_discrete(labels = wbgref$countries$labels) +
facet_wrap(~facet, ncol = 1, scales = "free_y") +
style$theme() +
style$theme_barchart() +
style$theme_legend("top")
# Align legend relative to entire figure not just plot area
g <- ggplotGrob(p)
g$layout$l[g$layout$name == "guide-box"] <- g$layout$l[g$layout$name == "guide-box"] - 1
g$theme <- style$theme()
g
},
aspect_ratio = 1,
title = "Despite increasing urbanization, many countries have reduced the share of urban dwellers living in slums.",
subtitle = wbg_name(indicator, year = paste0(min(df$date), " and ", max(df$date))),
source = "Source: UN-Habitat. World Development Indicators (EN.POP.SLUM.UR.ZS)."
)
}
fig_sdg11_slum_urban_rural_pie <- function(year = 2014) {
indicators <- c("EN.POP.SLUM.UR.ZS", "SP.URB.TOTL.IN.ZS", "SP.RUR.TOTL.ZS")
df <- wbgdata(
wbgref$regions$iso3c,
indicators,
years = year,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg11_slum_urban_rural_pie.csv"
)
df <- df[complete.cases(df), ] %>%
mutate(urban_slum = ((EN.POP.SLUM.UR.ZS / 100) * SP.URB.TOTL.IN.ZS),
urban_nonslum = SP.URB.TOTL.IN.ZS - urban_slum) %>%
select(-c(EN.POP.SLUM.UR.ZS, SP.URB.TOTL.IN.ZS)) %>%
rename(rural = SP.RUR.TOTL.ZS) %>%
gather(indicatorID, value, c(rural, urban_slum, urban_nonslum))
figure(
data = df,
plot = function(df, style = style_atlas()) {
ggplot(df, aes(x = factor(1), y = value, fill = indicatorID)) +
geom_bar(width = 1, stat = "identity") +
scale_fill_manual(values = c(
rural = style$colors$spot.secondary,
urban_slum = style$colors$spot.primary,
urban_nonslum = style$colors$spot.primary.light
)) +
facet_grid(iso3c ~ ., labeller = as_labeller(str_wrap_lines(wbgref$regions$labels,3,force=TRUE))) +
coord_polar(theta = "y") +
style$theme() +
theme(
axis.text = element_blank(),
panel.grid = element_blank(),
strip.text.y = element_text(angle = 0, hjust = 0.5),
panel.spacing = unit(0, "npc")
)
},
title = "But substantial slum populations still exist.",
subtitle = wbg_name(indicator = "Population", by = "by locale", year = year, denom = "%"),
note = "Note: Other regions not shown due to limited country data.",
source = paste("Source: WDI (EN.POP.SLUM.UR.ZS; SP.URB.TOTL.IN.ZS; SP.RUR.TOTL.ZS).")
)
}
fig_sdg11_urban_services_multiple <- function(years = 2014:2016) {
indicator <- tribble(
~service, ~urban_rural, ~indicatorID,
"Electricity", "urban", "EG.ELC.ACCS.UR.ZS",
"Electricity", "rural", "EG.ELC.ACCS.RU.ZS",
"Water", "urban", "SH.H2O.BASW.UR.ZS",
"Water", "rural", "SH.H2O.BASW.RU.ZS",
"Sanitation", "urban", "SH.STA.BASS.UR.ZS",
"Sanitation", "rural", "SH.STA.BASS.RU.ZS",
"Poverty", "urban", "SI.POV.URHC",
"Poverty", "rural", "SI.POV.RUHC"
)
df <- wbgdata(
c(wbgref$countries$iso3c, "WLD"),
indicator$indicatorID,
years = years,
indicator.wide = FALSE,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg11_urban_services_multiple.csv"
)
df <- df %>%
group_by(iso3c, indicatorID) %>%
filter(date == max(date)) %>%
ungroup()
df <- df %>% left_join(indicator)
count <- df %>%
group_by(iso3c) %>%
filter(!grepl("safely", service)) %>%
summarise(not_na = sum(!is.na(value)))
iso3c_select <- count %>% filter(not_na == 8 | iso3c == "WLD") %>% pull(iso3c)
iso3c_order <- iso3c_select[order(c(wbgref$countries$labels, WLD="ZZZ")[iso3c_select])]
df <- df %>% filter(iso3c %in% iso3c_select)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(iso3c = factor(iso3c, iso3c_order))
df <- df %>% mutate(service = factor(service, c(
"Sanitation",
"Water",
"Electricity",
"SPACER",
"Poverty"
)))
facet_labeller <- as_labeller(c(
setNames(str_replace(wbgref$countries$labels, "Republic", "Rep."), names(wbgref$countries$labels)),
WLD = "World"
))
ggplot(df, aes(service, value, fill = factor(urban_rural, c("urban", "rural")))) +
geom_col(position = "bullet", width = 0.8) +
coord_flip() +
scale_y_continuous(limits = c(0, 100), breaks = c(0, 50, 100), labels = c("", "", 100), expand = c(0, 0)) +
scale_x_discrete(labels = c(
Poverty = "Poverty",
Water = "Water",
Sanitation = "Sanitation",
Electricity = "Electricity",
SPACER = ""
)) +
scale_fill_manual(
values = style$colors$urban_rural,
labels = c(urban = "Urban", rural = "Rural"),
guide = guide_legend(ncol = 2, reverse = TRUE),
drop = FALSE
) +
facet_wrap(~iso3c, labeller = facet_labeller, scales = "free_x", ncol = 5) +
style$theme() +
style$theme_barchart() +
theme(
panel.spacing.y = unit(0.04, "npc"),
panel.spacing.x = unit(0.06, "npc"),
strip.text.x = element_text(hjust = 0.5, vjust = 0, margin = margin(0, 0, 0.5, 0, "lines")),
axis.text.y = element_text(margin = margin(0,1,0,0,"lines")),
legend.position = c(0.97, -0.02),
legend.justification = c(1, 0)
)
},
title = "Reliable infrastructure helps cities to thrive: urban dwellers have better access to services and tend to be less poor than their rural counterparts.",
subtitle = wbg_name(indicator = "Poverty headcount ratio at national poverty lines; and access to electricity, at least basic water and at least basic sanitation", by = "countries with all four indicators available", year = 2014, denom = "% of rural and urban populations"),
note = "a. Poverty aggregate based on national poverty lines not available for world since these lines differ by country.",
source = "Source: World Bank; WHO; and WHO/UNICEF JMP for Water Supply, Sanitation and Hygiene. WDI (SI.POV.URHC; SI.POV.RUHC; EG.ELC.ACCS.UR.ZS; EG.ELC.ACCS.RU.ZS; SH.H2O.BASW.UR.ZS; SH.H2O.BASW.RU.ZS; SH.STA.BASS.UR.ZS; SH.STA.BASS.RU.ZS)."
)
}
fig_sdg11_pm25_countries <- function(year = 2016) {
ind <- "EN.ATM.PM25.MC.M3"
df <- wbgdata(
country = wbgref$countries$iso3c,
indicator = ind,
years = year,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg11_pm25_countries.csv"
)
df$bins <- supercut(df$EN.ATM.PM25.MC.M3, c(
"0–10" = "[0, 10)",
"10–25" = "[10, 25)",
"25–35" = "[25, 35)",
"35 and over" = "[35, Inf)"
))
figure(
data = df,
plot = function(df, style = style_atlas_open(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bins", aspect_ratio = 2)
g$theme <- style$theme()
g
},
aspect_ratio = 1.5,
title = "Most countries exceed safe levels of fine particulate matter (PM2.5) pollution. Industry, transport, and household use of solid fuels are among the sources.",
subtitle = wbg_name(indicator = "Ambient air pollution, PM2.5, annual mean exposure", denom = "micrograms per cubic meter, ug/m3", year = year),
source = "Source: van Donkelaar and others 2016. World Development Indicators (EN.ATM.PM25.MC.M3)."
)
}
fig_sdg11_pm25_delhi_time <- function() {
df <- read_xlsx("inputs/sdg11/site_11820180325091614.xlsx", skip=16)
df <- df %>% transmute(
date = as.Date(df$`From Date`, format = "%d-%m-%Y"),
value = as.numeric(ifelse(PM2.5 == "None", NA, PM2.5))
)
df <- df %>% mutate(value = ifelse(value == 0, NA, value))
figure(
data = df,
plot = function(df, style = style_atlas_open(), quality = "low") {
df$month<-as.numeric(as.POSIXlt(df$date)$mon+1)
df$monthf<-factor(df$month,levels=as.character(1:12),labels=c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"),ordered=TRUE)
df$weekday<-((as.POSIXlt(df$date)$wday-1) %% 7) + 1
df$week <- as.numeric(format(df$date,"%W"))
df$bins <- supercut(df$value, c(
"0–25" = "[0, 100)",
"25–100" = "[100, 200)",
"100–400" = "[200, 400)",
"400 and over" = "[400, Inf)"
))
# Now for the plot
p <- ggplot(df, aes(weekday, week, fill = bins)) +
geom_tile(colour = "white") +
facet_grid(monthf~., scales = "free_y", space = "free_y", switch = "y") +
scale_y_reverse() +
scale_x_continuous(
position = "top",
breaks = 1:7,
labels = c("M", "Tu", "W", "Th", "F", "Sa", "Su"),
expand = c(0, 0)
) +
scale_fill_discrete(
palette = style$colors$continuous,
labels = wbggeo::rename_na("No data"),
na.value = style$colors$neutral) +
style$theme() +
style$theme_legend("righttop") +
theme(
axis.text.y = element_blank(),
panel.grid = element_blank(),
strip.text.y = element_text(angle=180),
panel.spacing = unit(0.1, "lines"),
legend.key.width = unit(1,"lines")
)
},
aspect_ratio = 1.5,
title = "And even in a specific location, PM2.5 varies with seasons and weather.",
subtitle = wbg_name(indicator = "PM2.5, daily mean", by = "DTU(a) Delhi", year = 2017, denom = "ug/m3"),
note = "a. Sampled at Delhi Technological University (DTU).",
source = "Source: India Central Pollution Control Board. https://app.cpcbccr.com"
)
}
fig_sdg11_air_pollution_deaths_map <- function() {
df <- read_csv("inputs/sdg11/AIR_5,AIR_50,AIR_41.csv")
df <- df %>%
filter(`GHO (CODE)` == "AIR_5") %>% # Not age standardized
transmute(
date = `YEAR (DISPLAY)`,
iso3c = `COUNTRY (CODE)`,
value = Numeric
)
df$bins <- supercut(df$value, c(
"0–20" = "[0, 20)",
"20–40" = "[20, 40)",
"40 and over" = "[40, Inf)"
))
figure(
data = df,
plot = function(df, style = style_atlas_open(), quality = "low") {
wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bins")
},
aspect_ratio = 1.5,
title = "Ambient air pollution has many adverse consequences, the most serious of which is increased risk of premature death.",
subtitle = wbg_name(indicator = "Deaths attributable to ambient air pollution", year = unique(df$date), denom = "per 100,000"),
source = "Source: WHO Global Health Observatory (database). http://apps.who.int/gho/data/view.main.BODAMBIENTAIRDTHS"
)
}
fig_sdg11_labor_income_loss_pollution <- function() {
df <- read_csv("inputs/sdg11/AnnualLaborIncomeLosses_AirPollution.csv")
df <- df %>%
rename(iso3c = "Region") %>%
gather(indicator, value, -iso3c)
df <- df %>%
filter(indicator %in% c("Total", "Ambient_PM2.5"))
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
order_colors = c(
Total = style$color$spot.secondary,
Ambient_PM2.5 = style$colors$spot.primary
)
labels = c(
Total = "Total (a)",
Ambient_PM2.5 = "Ambient PM2.5"
)
ggplot(df, aes(
x = fct_reorder2(iso3c, indicator == "Total air pollution", value),
y = value,
fill = factor(indicator, names(order_colors))
)) +
geom_col(position = "dodge") +
geom_text(
aes(y = 0.025, label = labels[indicator]),
data = . %>% filter(iso3c == "SAS"),
position = position_dodge(width = 0.9),
vjust = 0.5,
hjust = 0,
family = style$family,
size = style$gg_text_size,
color = style$colors$text.inverse,
angle = 90
) +
scale_x_discrete(labels = str_wrap_lines(wbgref$regions$labels,2,force=TRUE)) +
scale_fill_manual(values = order_colors) +
style$theme()
},
title = "In addition to the human toll, premature deaths attributable to air pollution have an economic cost to countries.",
subtitle = wbg_name(indicator = "Estimated annual labor income losses from deaths due to air pollution", by = "by type", year = 2015, denom = "% of GDP"),
note ="a. Includes losses attributable to household PM2.5 air pollution and ambient ozone.",
source = "Source: World Bank 2018. http://hdl.handle.net/10986/29001"
)
}
# make_all(path = "docs/sdg11/pdf", styler = style_atlas_cmyk, saver = figure_save_final_pdf)
make_all <- function(path = "docs/sdg11", styler = style_atlas, saver = figure_save_draft_png) {
# page 1
saver(fig_sdg11_urban_rural_trends_region(), styler, file.path(path, "fig_sdg11_urban_rural_trends_region.png"), width = 5.5, height = 2.5)
saver(fig_sdg11_percent_slums_country_change(), styler, file.path(path, "fig_sdg11_percent_slums_country_change.png"), width = 3.67, height = 4.25)
saver(fig_sdg11_slum_urban_rural_pie(), styler, file.path(path, "fig_sdg11_slum_urban_rural_pie.png"), width = 1.67, height = 4.25)
# page 2
saver(fig_sdg11_urban_services_multiple(), styler, file.path(path, "fig_sdg11_urban_services_multiple.png"), width = 5.5, height = 8.5, padding = margin(0,0.25,0,0,"in"))
# page 3
saver(fig_sdg11_pm25_countries(), styler, file.path(path, "fig_sdg11_pm25_countries.png"), width = 5.5, height = 3.75)
saver(fig_sdg11_pm25_delhi_time(), styler, file.path(path, "fig_sdg11_pm25_delhi_time.png"), width=2.67, height = 4.8, padding = margin(0.125,0,0,0,"in"))
# page 4
saver(fig_sdg11_air_pollution_deaths_map(), styler, file.path(path, "fig_sdg11_air_pollution_deaths_map.png"), width = 5.5, height = 4.25)
saver(fig_sdg11_labor_income_loss_pollution(), styler, file.path(path, "fig_sdg11_labor_income_loss_pollution.png"), width = 5.5, height = 4.25)
}