From 017acd1a5278915d067b5b4f175d79088f274844 Mon Sep 17 00:00:00 2001 From: woongjoonchoi Date: Fri, 17 Nov 2023 05:47:10 +0900 Subject: [PATCH] modify woongjoonchoi.github.io/_posts/DeepLearning/Optimization/2021-12-10-Batch-Normalization-intro.md modify mathmatical expression --- .../Optimization/2021-12-10-Batch-Normalization-intro.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/_posts/DeepLearning/Optimization/2021-12-10-Batch-Normalization-intro.md b/_posts/DeepLearning/Optimization/2021-12-10-Batch-Normalization-intro.md index ca2513e..661a0e4 100644 --- a/_posts/DeepLearning/Optimization/2021-12-10-Batch-Normalization-intro.md +++ b/_posts/DeepLearning/Optimization/2021-12-10-Batch-Normalization-intro.md @@ -34,13 +34,13 @@ $$ \Sigma z^{(2)}_{i} $$ $$ \mu = \frac {\Sigma z^{(2)}_{i}} {m} $$ -$$ \sigma = \frac {(\Sigma z^{(2)}_{i} - \mu )^2} {m} $$ +$$ \sigma = \frac {\Sigma (z^{(2)}_{i} - \mu )^2} {m} $$ -$$ z_{norm}^{(i)} = \frac {(\Sigma z^{(2)}_{i} - \mu )}{ {\sigma} } $$ +$$ z_{norm}^{(i)} = \frac {( z^{(2)}_{i} - \mu )}{ {\sigma} } $$ 하지만 , 이렇게 하면 $$\sigma$$ 가 0이 될 경우 계산을 할 수 없습니다. 따라서, 아래와 같이 계산을 합니다. -$$ z_{norm}^{(i)} = \frac {(\Sigma z^{(2)}_{i} - \mu )} {\sqrt {\sigma^2 + \epsilon} } $$ +$$ z_{norm}^{(i)} = \frac {( z^{(2)}_{i} - \mu )} {\sqrt {\sigma^2 + \epsilon} } $$