Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parameters for random accelerating objects #26

Open
vincenzorusso3 opened this issue Feb 28, 2022 · 1 comment
Open

Parameters for random accelerating objects #26

vincenzorusso3 opened this issue Feb 28, 2022 · 1 comment

Comments

@vincenzorusso3
Copy link

vincenzorusso3 commented Feb 28, 2022

Dear Sir,
What might be the best parameters, or acceleration model, for a setting like this:
image

  • Cars accelerating and slowing down at random
  • My detections bounding boxes are floats

image

  • Video is captured at fixed FPS = 5
  • It only detects tracks if min_steps_alive=2 or 1, if > 2 it doesn't detect

I'have tried with some attempts but I always get track-id switching, generating always new tracks

raspberry

Yours Sincerely.

code.TXT

@vincenzorusso3
Copy link
Author

vincenzorusso3 commented Feb 28, 2022

```
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main script to run the object detection routine."""
import argparse
import sys
import time

import numpy as np

import cv2
from object_detector import ObjectDetector
from object_detector import ObjectDetectorOptions
import utils

from motpy import Detection, MultiObjectTracker, NpImage
from motpy.core import setup_logger
from motpy.detector import BaseObjectDetector
from motpy.testing_viz import draw_detection, draw_track
from motpy.utils import ensure_packages_installed


def run(model: str, camera_id: int, width: int, height: int, num_threads: int,
        enable_edgetpu: bool) -> None:
  """Continuously run inference on images acquired from the camera.

  Args:
    model: Name of the TFLite object detection model.
    camera_id: The camera id to be passed to OpenCV.
    width: The width of the frame captured from the camera.
    height: The height of the frame captured from the camera.
    num_threads: The number of CPU threads to run the model.
    enable_edgetpu: True/False whether the model is a EdgeTPU model.
  """

  # Variables to calculate FPS
  counter, fps = 0, 0
  start_time = time.time()
  
  logger = setup_logger(__name__, 'DEBUG', is_main=True)
  
  model_spec = {'order_pos': 1, 'dim_pos': 2,
                  'order_size': 0, 'dim_size': 2,
                  'q_var_pos': 5000., 'r_var_pos': 0.1}
  dt = 1 / 5 # assume 6 fps
  tracker = MultiObjectTracker(dt=dt, model_spec=model_spec)

  # Start capturing video input from the camera
  cap = cv2.VideoCapture(camera_id)
  cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
  cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
  cap.set(cv2.CAP_PROP_FPS, 5)


  # Visualization parameters
  row_size = 20  # pixels
  left_margin = 24  # pixels
  text_color = (0, 0, 255)  # red
  font_size = 1
  font_thickness = 1
  fps_avg_frame_count = 10

  # Initialize the object detection model
  options = ObjectDetectorOptions(
      num_threads=num_threads,
      score_threshold=0.3,
      max_results=3,
      label_allow_list=['car','truck','motorcycle'],
      enable_edgetpu=enable_edgetpu)
  detector = ObjectDetector(model_path=model, options=options)
  
  print(model)
  print(num_threads)
  print(enable_edgetpu)
  
  out_detections=[]

  # Continuously capture images from the camera and run inference
  while cap.isOpened():
    success, image = cap.read()
    if not success:
      sys.exit(
          'ERROR: Unable to read from webcam. Please verify your webcam settings.'
      )

    counter += 1
    image = cv2.flip(image, 1)

    # Run object detection estimation using the model.
    detections = detector.detect(image)
    out_detections=[]
    
    for detection in detections:
      #print(type(detection.bounding_box))
      score= round(detection.categories[0].score, 2)
      # la bbox gliela devo passare come [[x1,y1,x2,y2,score]]
      new_bbox=np.array([detection.bounding_box.left,detection.bounding_box.bottom,detection.bounding_box.right,detection.bounding_box.top])
      print(new_bbox)#singola bbox devo aggregare per fotogramma
      #arr.append(new_bbox)
      #out_detections.append(Detection(box=new_bbox, score=score))
      #print(type(new_bbox))
      #rint(new_bbox.shape)
      det=Detection(new_bbox,score)
      #print(det)
      out_detections.append(det)
    #track_bbs_ids=mot_tracker.update(np.array(arr))
    #print(track_bbs_ids)
    #print(out_detections)
    tracker.step(out_detections)
    #print(detections)
    tracks = tracker.active_tracks(min_steps_alive=2)
    #logger.debug(f'tracks: {len(tracks)}')
    print(tracks)


    # Draw keypoints and edges on input image
    #image = utils.visualize(image, detections)
    
    for det in out_detections:
        draw_detection(image, det)

    for track in tracks:
        draw_track(image, track)

    # Calculate the FPS
    if counter % fps_avg_frame_count == 0:
      end_time = time.time()
      fps = fps_avg_frame_count / (end_time - start_time)
      start_time = time.time()

    # Show the FPS
    fps_text = 'FPS = {:.1f}'.format(fps)
    text_location = (left_margin, row_size)
    cv2.putText(image, fps_text, text_location, cv2.FONT_HERSHEY_PLAIN,
                font_size, text_color, font_thickness)

    # Stop the program if the ESC key is pressed.
    if cv2.waitKey(1) == 27:
      break
    cv2.imshow('object_detector', image)

  cap.release()
  cv2.destroyAllWindows()


def main():
  parser = argparse.ArgumentParser(
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  parser.add_argument(
      '--model',
      help='Path of the object detection model.',
      required=False,
      default='efficientdet_lite0.tflite')
  parser.add_argument(
      '--cameraId', help='Id of camera.', required=False, type=int, default=0)
  parser.add_argument(
      '--frameWidth',
      help='Width of frame to capture from camera.',
      required=False,
      type=int,
      default=640)
  parser.add_argument(
      '--frameHeight',
      help='Height of frame to capture from camera.',
      required=False,
      type=int,
      default=480)
  parser.add_argument(
      '--numThreads',
      help='Number of CPU threads to run the model.',
      required=False,
      type=int,
      default=4)
  parser.add_argument(
      '--enableEdgeTPU',
      help='Whether to run the model on EdgeTPU.',
      action='store_true',
      required=False,
      default=False)
  args = parser.parse_args()

  run(args.model, int(args.cameraId), args.frameWidth, args.frameHeight,
      int(args.numThreads), bool(args.enableEdgeTPU))


if __name__ == '__main__':
  main()

```

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant