-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvad.py
162 lines (111 loc) · 4.78 KB
/
vad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import librosa, librosa.display
from matplotlib import pyplot as plt
import numpy as np
import moviepy.editor as mp
from video_utils import *
def vad(audio_data,sr=8000,segment=5,thresh=[0.25,0.025],verbose=False):
frame_len = int(sr*segment)
#print(frame_len)
audio_len = len(audio_data)
data = np.abs(audio_data)
num_frames = int(audio_len/frame_len)
energys = []
noises = []
peaks = []
if num_frames<1:
return []
for i in range(num_frames):
frame = data[i*frame_len:(i+1)*frame_len]
energy = np.mean(np.square(frame))
noise = np.var(frame)
energys.append(energy)
noises.append(noise)
peaks.append(np.max(frame))
max_energy = max(energys)
delta = 2*min(max_energy/5,1e-5)
noises2 = [x+delta for x in noises]
snr = [x[0]/x[1] for x in zip(energys,noises2)]
if verbose:
plt.figure(11)
plt.plot(energys,'r')
plt.plot(noises,'b')
plt.show()
print("max_energe = ",max_energy)
plt.figure(12)
plt.plot(snr)
plt.show()
silence = [x[0]>thresh[0] and x[1]>thresh[1] for x in zip(snr,peaks)]
return silence
#a wrapper to read a audio file
def vad_on_audio_file(audio_data,sr=8000,segment=5,thresh=[0.25,0.025],verbose=False):
segment = segment
audio_data, sr = librosa.load(audio_file,sr=sr)
if verbose:
duration = librosa.get_duration(y=wav_data, sr=sr)
print("sampling rate = {}, length = {}, durations ={}s".format(sr,len(wav_data),duration))
return vad(audio_data,sr=sr,segment=segment,thresh=segment,verbose=verbose)
def vad_on_video(video_file,sr=8000,segment=5,thresh=[0.25,0.1],output_dir=None,verbose=False):
video_file_splits = video_file.split('/')
video_dir = '/'.join(video_file_splits[:-1])
video_filename = video_file_splits[-1]
if output_dir is None:
output_dir = video_dir
video_file_output = os.path.join(output_dir,video_filename+'_vad_annotated.mp4')
print(video_file_output)
if os.path.exists(video_file_output) and verbose is False: #already exists
return video_file_output
#extract audio from video file
audio_file = extract_audio(video_file,audio_dir=output_dir)
print(audio_file)
segment = segment
wav_data, sr = librosa.load(audio_file,sr=sr)
duration = librosa.get_duration(y=wav_data, sr=sr)
print("sampling rate = {}, length = {}, durations ={}s".format(sr,len(wav_data),duration))
if verbose:
plt.figure(1)
plt.title("Signal Wave...")
plt.plot(wav_data)
plt.show()
pre_emphasis = 0.97
wav_data = np.append(wav_data[0], wav_data[1:] - pre_emphasis * wav_data[:-1])
plt.figure(2)
plt.title("Signal Wave...")
plt.plot(wav_data)
plt.show()
vocal = vad(wav_data, sr=sr,segment=segment,thresh=thresh,verbose=verbose)
video_file_output = os.path.join(output_dir,video_filename+'_vad_annotated.mp4')
print(video_file_output)
add_subtitle_to_video(vocal,"Vocal",segment,video_file,video_file_output,verbose=verbose)
return video_file_output
if __name__ == "__main__":
sr=8000
segment=5 #seconds
thresh = [0.25,0.025] #these thresholds are set loose. It is okay to detect silence as vocal, but not the other way.
verbose = False
'''
#test audio file
print("testing vad on audio file")
video_file = 'Self/10Cry/146B9CB78A18_subjectawake_1620132682993.mp4'
audio_file = 'Self/10Cry/146B9CB78A18_subjectawake_1620132682993.mp3'
video_file_output = 'Self/10Cry/146B9CB78A18_subjectawake_1620132682993_vocal_annotated.mp4'
output_dir = 'output'
print("reading audio file ... ")
audio_data, sr = librosa.load(audio_file,sr=8000)
duration = librosa.get_duration(y=audio_data, sr=sr)
print("sampling rate = {}, length = {}, durations ={}s".format(sr,len(audio_data),duration))
vocal = vad(audio_data,sr=sr,segment=segment,thresh=thresh,verbose=False)
add_subtitle_to_video(vocal,"Vocal",segment,video_file,video_file_output,verbose=verbose)
input("Press any key to test vad on vidoe file")
'''
video_dir = 'Self/10Cry/'
video_files = os.listdir(video_dir)
video_files = [x for x in video_files if x.endswith('mp4') ]
print(video_files)
output_dir = 'output'
for v in video_files:
v_full = video_dir+v
vad_on_video(v_full,sr=sr,segment=segment,thresh=thresh,output_dir=output_dir,verbose=False)
'''
video_file = 'Self/10Cry/E06290634162_subjectawake_1638677765467.mp4'
vad_on_video(video_file,sr=sr,segment=segment,thresh=thresh,output_dir='output',verbose=True)
'''