-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathwNLDR.h
307 lines (212 loc) · 9.31 KB
/
wNLDR.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
//##########################################################################
//# This software is part of the Treescaper i
//# -- Version 0.1
//# Copyright (C) 2010 Wen Huang
//#
//# This program is free software; you can redistribute it and/or
//# modify it under the terms of the GNU General Public License
//# as published by the Free Software Foundation; either version 2
//# of the License, or (at your option) any later version.
//#
//# This program is distributed in the hope that it will be useful,
//# but WITHOUT ANY WARRANTY; without even the implied warranty of
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//# GNU General Public License for more details.
//# http://www.gnu.org/copyleft/gpl.html
//##########################################################################
// wNLDR.h
// cost function: Linear MDS, Metric MDS, CCA, SAMMON
// algorithm : Gauss Seidel, Majorization, stachatic gradient.
// March/11/2010
// by whuang
#ifndef WNLDR_H
#define WNLDR_H
#include "wdef.h"
#include "warray.cpp"
#include "wstring.h"
#include "wmix.h"
#include "wimport_form.h"
#include "wmapping.cpp"
#include "randgen.h"
#include "wfile.h"
#include "wmatrix.cpp"
struct nldr_parameters{
int distance_file_type; //
int length_tru; // 11
int interval_tru; // 11
int length_con; // 5
int iterval_con; // 5
double random_start; // -100
double random_end; // 100
double KRU_LIN_e; // 0.00001
int KRU_LIN_max_iter; // 1000
long KRU_LIN_run_time; // 0
double KRU_MAJ_e; // 0.00001
int KRU_MAJ_max_iter; // 1000
long KRU_MAJ_run_time; // 0
double KRU_GAU_e; // 0.0001
int KRU_GAU_max_iter; // 1000
long KRU_GAU_run_time; // 0
int KRU_STO_epochs; // 100
double KRU_STO_alpha0; // 0.5
double KRU_STO_alphan; // 0.01
double NOR_MAJ_e; // 0.00001
int NOR_MAJ_max_iter; // 1000
long NOR_MAJ_run_time; // 0
double NOR_GAU_e; // 0.0001
int NOR_GAU_max_iter; // 1000
long NOR_GAU_run_time; // 0
int NOR_STO_epochs; // 100
double NOR_STO_alpha0; // 0.25
double NOR_STO_alphan; // 0.01
double NLM_MAJ_e; // 0.0001
int NLM_MAJ_max_iter; // 1000
long NLM_MAJ_run_time; // 0
double NLM_GAU_e; // 0.0001
int NLM_GAU_max_iter; // 1000
long NLM_GAU_run_time; // 0
int NLM_STO_epochs; // 100
double NLM_STO_alpha0; // 0.25
double NLM_STO_alphan; // 0.01
double CCA_MAJ_e; // 0.0001
int CCA_MAJ_max_iter; // 1000
long CCA_MAJ_run_time; // 0
double CCA_MAJ_lambda0; // 12000
double CCA_MAJ_lambdan; // 1
double CCA_GAU_e; // 0.0001
int CCA_GAU_max_iter; // 1000
long CCA_GAU_run_time; // 0
double CCA_GAU_lambda0; // 12000
double CCA_GAU_lambdan; // 1
int CCA_STO_epochs; // 100
double CCA_STO_lambda0; // 12000
double CCA_STO_lambdan; // 1
double CCA_STO_alpha0; // 0.5
double CCA_STO_alphan; // 0.01
};
class NLDR{
public:
NLDR(){};
~NLDR(){};
NLDR(String fname, String dim, String cost, String algo = (String) "", String init_md = (String) "CLASSIC_MDS", String flag = (String) "", long seed = -1, String para_fname = "")
{
double **dist = NULL;
init_NLDR(fname, dist, 0, dim, cost, algo, init_md, flag, seed, para_fname);
}
void init_NLDR(String fname, double **dist, int size, String dim, String cost, String algo = (String) "", String init_md = (String) "CLASSIC_MDS", String flag = (String) "", long seed = -1, String para_fname = "");
#ifdef COMMAND_LINE_VERSION
NLDR(String fname, String ftype, String dim, String cost, String algo = (String) "", String init_md = (String) "CLASSIC_MDS", String flag = (String) "", long seed = -1, String para_fname = "")
{
init_NLDR(fname, ftype, dim, cost, algo, init_md, flag, seed, para_fname);
}
void init_NLDR(String fname, String ftype, String dim, String cost, String algo = (String) "", String init_md = (String) "CLASSIC_MDS", String flag = (String) "", long seed = -1, String para_fname = "");
#endif
void Compute_NLDR();
void result_analysis();
void output_to_files();
nldr_parameters parameters;
private:
//functions:
#ifdef COMMAND_LINE_VERSION
void NLDR_init_parameters(String para_filename);
void NLDR_load_MX();
#endif
void make_output_file_names(String &filename_COR, String &filename_DIS, String &filename_STR, String &filename_TIM, String &filename_TRU, String &filename_CON, String &filename_1NN);
void NLDR_load_D();
void NLDR_init_X(String init_md, long seed);
String make_filename(String name_D, String dimension, String cost_f, String output, String algorithm, String flag);
// void NLDR_init_parameters(String para_filename);
void CLASSIC_MDS();
double CLASSIC_MDS_stress_function(const Matrix<double> &S1, const Matrix<double> &S2);
void KRUSKAL1();
void KRUSKAL1_LINEAR_ITERATION();
void KRUSKAL1_MAJORIZATION();
Matrix<double> KRUSKAL1_compute_Z(const Matrix<double> &BX);
double KRUSKAL1_stress_function(Matrix<double> &DX);
double KRUSKAL1_rescale(Matrix<double> &DX);
double KRUSKAL1_stress_function_by_matrix(const Matrix<double> &DX);
void KRUSKAL1_compute_BX(const Matrix<double> &DX, Matrix<double> &BX);
void KRUSKAL1_GAUSS_SEIDEL();
void KRUSKAL1_STOCHASTIC();
void KRUSKAL1_METROPOLIS();
void KRUSKAL1_GRADIENT(Matrix<double> &gradient, Matrix<double> &CORX, Matrix<double> &ADX);
void NORMALIZED();
void NORMALIZED_MAJORIZATION();
Matrix<double> NORMALIZED_compute_Z(const Matrix<double> &BX);
double NORMALIZED_stress_function(Matrix<double> &DX);
double NORMALIZED_stress_function_by_matrix(const Matrix<double> &DX);
void NORMALIZED_compute_BX(const Matrix<double> &DX, Matrix<double> &BX);
void NORMALIZED_GAUSS_SEIDEL();
void NORMALIZED_STOCHASTIC();
void NORMALIZED_METROPOLIS();
void NORMALIZED_GRADIENT(Matrix<double> &gradient, Matrix<double> &CORX, Matrix<double> &ADX);
double Normal_random_generator();
void SAMMON();
void SAMMON_MAJORIZATION();
Matrix<double> SAMMON_compute_Z(const Matrix<double> &BX, const Matrix<double> &V);
double SAMMON_stress_function(Matrix<double> &DX);
double SAMMON_stress_function_by_matrix(const Matrix<double> &DX);
void SAMMON_compute_BX(const Matrix<double> &DX, Matrix<double> &BX);
void SAMMON_GAUSS_SEIDEL();
void SAMMON_STOCHASTIC();
void SAMMON_METROPOLIS();
void SAMMON_GRADIENT(Matrix<double> &gradient, Matrix<double> &CORX, Matrix<double> &ADX);
void CCA();
void CCA_MAJORIZATION();
void CCA_compute_BX(const Matrix<double> &DX, double lambda, Matrix<double> &BX);
Matrix<double> CCA_compute_Z(const Matrix<double> &BX, const Matrix<double> &V);
double compute_lambda(const Matrix<double> &DX);
double CCA_stress_function(Matrix<double> &DX, double lambda);
double CCA_stress_function_by_matrix(const Matrix<double> &DX, double lambda);
void CCA_GAUSS_SEIDEL();
void CCA_STOCHASTIC();
void CCA_METROPOLIS();
void CCA_GRADIENT(Matrix<double> &gradient, Matrix<double> &CORX, Matrix<double> &ADX, double lambda);
bool search_first_condition(const Matrix<double> &DX, double fxc, const Matrix<double> &dir, int i, int j, double initslope, double para, double &step_size, double lambda, double pre_step_size, double &fxnew);
bool search_first_condition(const Matrix<double> &DX, double fxc, double dir, int i, int j, double initslope, double para, double &step_size, double lambda, double pre_step_size, double &fxnew);
void update_distance_matrix(Matrix<double> &DX, int i, int j, double xcnew, double para);
void KRUSKAL1_update_distance_matrix(Matrix<double> &DX, int i, int j, double xcnew);
void NORMALIZED_update_distance_matrix(Matrix<double> &DX, int i, int j, double xcnew);
void SAMMON_update_distance_matrix(Matrix<double> &DX, int i, int j, double xcnew);
void CCA_update_distance_matrix(Matrix<double> &DX, int i, int j, double xcnew, double para);
double update_cost_function(const Matrix<double> &DX, double fxc, int i, int j, double xcnew, double para);
double KRUSKAL1_update_stress_function(const Matrix<double> &DX, int i, int j, double xcnew, double fxc);
double NORMALIZED_update_stress_function(const Matrix<double> &DX, int i, int j, double xcnew, double fxc, double weight);
double SAMMON_update_stress_function(const Matrix<double> &DX, int i, int j, double xcnew, double fxc, double weight);
double CCA_update_stress_function(const Matrix<double> &DX, int i, int j, double xcnew, double fxc, double para);
double update_Ei_cost_function(double fxc, const Matrix<double> &DX, int ind, int j, double para, const Matrix<double> &xcnew);
double NORMALIZED_update_Ei_cost_function(double fxc, const Matrix<double> &DX, int ind, int j, const Matrix<double> &xcnew);
double SAMMON_update_Ei_cost_function(double fxc, const Matrix<double> &DX, int ind, int j, const Matrix<double> &xcnew);
double CCA_update_Ei_cost_function(double fxc, const Matrix<double> &DX, int ind, int j, double para, const Matrix<double> &xcnew);
void Trustworthiness_analysis();
void Continuity_analysis();
void oneNN_analysis();
//storage:
//initial information:
Matrix<double> D;
Matrix<double> MX;
Matrix<double> X;
int size;
String D_prefname;
String D_postfname;
String dim_str;
String cost_function;
String algorithm;
String file_flag;
//output information:
Matrix<double> U;
Matrix<double> S;
Matrix<double> Vt;
Matrix<double> COR;
Matrix<double> DIS;
long time_cost;
double STRESS;
// result analysis
Matrix<double> Trustworthiness;
Matrix<double> Continuity;
Matrix<double> oneNN;
double para1;
double para2;
double para3;
};
#endif