-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlazy.py
82 lines (67 loc) · 2.03 KB
/
lazy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import sys
def median(arr):
n = len(arr)
if n % 2 == 1:
return sorted(arr)[n//2]
return (sorted(arr)[n//2 - 1] + sorted(arr)[n//2])/2
def brier(vals, truth):
total = 0
for pos in range(answer_count):
total += vals[pos]**2 * (100 - truth[pos]) \
+ (100 - vals[pos])**2 * truth[pos]
return total
# 1 arg
question = sys.argv[1]
pros = set()
with open('pros', 'r') as f:
for line in f:
pros.add(line.strip())
# Load guesses and filter pros
# Todo keep order
last_guess = {}
pro_guess = {}
# Track when guess was made
time = 0
with open('gjo-' + question, 'r') as f:
for line in f:
name, *vals = line.split()
last_guess[name] = tuple(map(int, vals))
if name in pros:
pro_guess[name] = [time] + list(map(int, vals))
time += 1
f.close()
# Nice to look at these in order
pros_by_time = [[pro, *pro_guess[pro]] for pro in pro_guess]
pros_by_time = sorted(pros_by_time, key=lambda x: x[1])
print("%s pros" % len(pro_guess))
for pro in pros_by_time:
print(pro)
if len(pro_guess) < 1:
print("too little data")
exit(0)
answer_count = len(list(pro_guess.values())[0]) - 1
# Find the median in each bin for pros
all_vals = [[] for _ in range(answer_count)]
# Even pros have stale guesses
for _, _, *vals in pros_by_time[-5:]:
for pos in range(answer_count):
all_vals[pos].append(vals[pos])
med_vals = [median(vals) for vals in all_vals]
# Normalize
denom = sum(med_vals)
your_vals = [round(val*100/denom, 1) for val in med_vals]
print(your_vals)
scores = []
for name in last_guess:
score = brier(last_guess[name], your_vals)/10**6
if score > 2:
continue
scores.append(round(score, 3))
#print("%s %s %.3f" % (name, ' '.join(map(str, last_guess[name])), score))
mid = len(scores)//2
print(sorted(scores)[mid-10:mid+1])
med_score = median(scores)
your_score = brier(your_vals, your_vals)/10**6
print("crowd score %.3f" % med_score)
print("your score %.3f" % your_score)
print("diff score %.3f" % (med_score - your_score))