-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathworker.py
268 lines (222 loc) · 12.1 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python
import cv2 # don't remove it
import go_vncdriver # don't remove it
import tensorflow as tf
import numpy as np
import argparse
import logging
import sys, signal
import time
import os
from a3c import A3C
from envs import create_env
from model import create_model
from evaluate import evaluate_main
import shutil
import distutils.version
use_tf_0_12_api = distutils.version.LooseVersion(tf.VERSION) >= distutils.version.LooseVersion('0.12.0') and \
distutils.version.LooseVersion(tf.VERSION) <= distutils.version.LooseVersion('0.12.1')
use_tf_1_1_api = distutils.version.LooseVersion(tf.VERSION) == distutils.version.LooseVersion('1.1.0')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Disables write_meta_graph argument, which freezes entire process and is mostly useless.
class FastSaver(tf.train.Saver):
def save(self, sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix="meta", write_meta_graph=True):
super(FastSaver, self).save(sess, save_path, global_step, latest_filename,
meta_graph_suffix, False)
def run_worker(args, server, cluster):
env = create_env(args.env_id, client_id=str(args.task), remotes=args.remotes)
max_global_steps = args.max_global_steps
trainer = A3C(env, args.model_id, args.task, cluster, args.visualise, max_global_steps,
lr=args.lr, ent_factor=args.ent_factor,
egreedy=args.egreedy, explore_factor=args.explore_factor)
# Variable names that start with "local" are not saved in checkpoints.
if use_tf_0_12_api or use_tf_1_1_api:
variables_to_save = [v for v in tf.global_variables() if not v.name.startswith("local")]
init_op = tf.variables_initializer(variables_to_save)
init_all_op = tf.global_variables_initializer()
else:
variables_to_save = [v for v in tf.all_variables() if not v.name.startswith("local")]
init_op = tf.initialize_variables(variables_to_save)
init_all_op = tf.initialize_all_variables()
saver = FastSaver(variables_to_save)
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
logger.info('Trainable vars:')
for v in var_list:
logger.info(' %s %s', v.name, v.get_shape())
def init_fn(ses):
logger.info("Initializing all parameters.")
ses.run(init_all_op)
config = tf.ConfigProto(device_filters=["/job:ps", "/job:worker/task:{}".format(args.task)],
allow_soft_placement=True,
log_device_placement=True)
logdir = os.path.join(args.log_dir, 'train')
if use_tf_0_12_api or use_tf_1_1_api:
summary_writer = tf.summary.FileWriter(logdir + "_%d" % args.task)
else:
summary_writer = tf.train.SummaryWriter(logdir + "_%d" % args.task)
logger.info("Events directory: %s_%s", logdir, args.task)
sv = tf.train.Supervisor(is_chief=(args.task == 0),
logdir=logdir,
saver=saver,
summary_op=None,
init_op=init_op,
init_fn=init_fn,
summary_writer=summary_writer,
ready_op=tf.report_uninitialized_variables(variables_to_save),
global_step=trainer.global_step,
save_model_secs=30,
save_summaries_secs=30)
logger.info(
"Starting session. If this hangs, we're mostly likely waiting to connect to the parameter server. " +
"One common cause is that the parameter server DNS name isn't resolving yet, or is misspecified.")
with sv.managed_session(server.target, config=config) as sess, sess.as_default():
sess.run(trainer.sync)
trainer.start(sess, summary_writer)
global_step = sess.run(trainer.global_step)
logger.info("Starting training at step=%d", global_step)
while not sv.should_stop() and (not max_global_steps or global_step < max_global_steps):
trainer.process(sess)
global_step = sess.run(trainer.global_step)
# Ask for all the services to stop.
sv.stop()
logger.info('reached %s steps. worker stopped.', global_step)
def run_worker_val(args):
val_model_secs = args.val_model_secs
if val_model_secs < 0:
logger.info('worker_val: val_model_secs < 0, no validating, exit...')
return
logger.info("worker_val: do validating every {} seconds".format(val_model_secs))
logdir_train = os.path.join(args.log_dir, 'train')
logdir_val = os.path.join(args.log_dir, 'val')
logdir_val_tmp = os.path.join(args.log_dir, 'val_tmp') # TODO: assign a rand name, in case there are racing?
str_criterion = "score" if args.val_criterion == "score" else "episode length" # else assume episode_length
# try to initialize current best
cur_best = -np.inf
try:
score, ep_len = evaluate_main(args.env_val_id, args.model_id, args.max_val_episodes, ckpt_dir=logdir_val,
output_dir="", sleep_time=0.0, render=False, verbose=1)
cur = score[0] if args.val_criterion == "score" else ep_len[0] # else assume episode_length
cur_best = cur if cur> cur_best else cur_best
logger.info("load initial val model from {}".format(logdir_val))
except Exception as e:
logger.info(e)
logger.info("initial best {} = {}".format(str_criterion, cur_best))
summary_dir = os.path.join(args.log_dir, 'valid_score')
if use_tf_0_12_api or use_tf_1_1_api:
summary_writer = tf.summary.FileWriter(summary_dir)
else:
summary_writer = tf.train.SummaryWriter(summary_dir)
while True:
time.sleep(val_model_secs)
def my_rm_dir(dirname):
def _handler(f, p, err_info):
logger.info("{} not exists, ignored by rmtree".format(err_info))
shutil.rmtree(dirname, False, _handler)
try:
# backup current checkpoints
logger.info('validating begins...')
my_rm_dir(logdir_val_tmp)
shutil.copytree(logdir_train, logdir_val_tmp)
# do evaluate
[score, ep_len], global_step = evaluate_main(args.env_val_id, args.model_id, args.max_val_episodes, ckpt_dir=logdir_val_tmp, output_dir="", sleep_time=0.0, render=False, verbose=1, with_global_step=True)
logger.info('validating done...')
with tf.variable_scope("validation"):
if use_tf_0_12_api or use_tf_1_1_api:
tf.summary.scalar('score_avg', score[0])
tf.summary.scalar('score_err', score[1])
tf.summary.scalar('episode_length_avg', ep_len[0])
tf.summary.scalar('episode_length_err', ep_len[1])
summary_op = tf.summary.merge_all()
else:
tf.scalar_summary('score_avg', score[0])
tf.scalar_summary('score_err', score[1])
tf.scalar_summary('episode_length_avg', ep_len[0])
tf.scalar_summary('episode_length_err', ep_len[1])
summary_op = tf.merge_all_summaries()
with tf.Session() as sess:
logger.info('get summary...')
summary_result = sess.run(summary_op)
summary_writer.add_summary(summary_result, global_step)
cur = score[0] if args.val_criterion == "score" else ep_len[0] # else assume episode_length
# if better, enforced copy logdir_val_tmp to log_dir_val
logger.info("current best {} = {}".format(str_criterion, cur_best))
logger.info("current averaged {} = {}".format(str_criterion, cur))
if cur > cur_best:
cur_best = cur
my_rm_dir(logdir_val)
shutil.copytree(logdir_val_tmp, logdir_val)
logger.info('global step: {},\tbest score:{}\n'.format(global_step, cur_best))
with open(os.path.join(args.log_dir, 'valid_score', 'cur_best.txt'), 'a') as cur_best_file:
cur_best_file.write('global step: {},\tbest score:{}\n'.format(global_step, cur_best))
logger.info("new best model found, saved to {}".format(logdir_val))
logger.info('validating done')
except Exception as e:
logger.info(e)
continue
# it never ends, but should be fine. just kill the process when training done
def cluster_spec(num_workers, num_ps):
""" More tensorflow setup for data parallelism """
cluster = {}
port = 12222
all_ps = []
host = '127.0.0.1'
for _ in range(num_ps):
all_ps.append('{}:{}'.format(host, port))
port += 1
cluster['ps'] = all_ps
all_workers = []
for _ in range(num_workers):
all_workers.append('{}:{}'.format(host, port))
port += 1
cluster['worker'] = all_workers
return cluster
def main(_):
""" Setting up Tensorflow for data parallel work """
parser = argparse.ArgumentParser(description=None)
parser.add_argument('--env-id', default="PongDeterministic-v3", help='Environment id')
parser.add_argument('--env-val-id', default="Pong-v0", help='Environment id for validation')
parser.add_argument('--model-id', default="convx2lstm", help='prediction model id')
parser.add_argument('--max-global-steps', default=100000000, type=int, help='Number of global steps')
parser.add_argument('--lr', default=1e-4, type=float, help='initial learning rate')
parser.add_argument('--ent-factor', default=0.01, type=float, help='entropy term factor')
parser.add_argument('--egreedy', default=-1.0, type=float, help='epsilon greedy factor')
parser.add_argument('--explore-factor', default=1.0, type=float, help='exploration factor')
parser.add_argument('--val-model-secs', default=-1, type=int, help='Validating model every seconds')
parser.add_argument('--val-criterion', default="score", help='Validating criterion {score|episode_length}')
parser.add_argument('--max-val-episodes', default=2, type=int, help='Number of validation episodes')
parser.add_argument('--task', default=0, type=int, help='Task index')
parser.add_argument('--job-name', default="worker", help='worker or ps')
parser.add_argument('--num-workers', default=1, type=int, help='Number of workers')
parser.add_argument('--log-dir', default="tmp/pong", help='Log directory path')
parser.add_argument('-v', '--verbose', action='count', dest='verbosity', default=0, help='Set verbosity.')
parser.add_argument('-r', '--remotes', default=None,
help='References to environments to create (e.g. -r 20), '
'or the address of pre-existing VNC servers and '
'rewarders to use (e.g. -r vnc://localhost:5900+15900,vnc://localhost:5901+15901)')
# Add visualisation argument
parser.add_argument('--visualise', action='store_true',
help="Visualise the gym environment by running env.render() between each timestep")
args = parser.parse_args()
spec = cluster_spec(args.num_workers, 1)
cluster = tf.train.ClusterSpec(spec).as_cluster_def()
def shutdown(signal, frame):
logger.warn('Received signal %s: exiting', signal)
sys.exit(128 + signal)
signal.signal(signal.SIGHUP, shutdown)
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
if args.job_name == "worker":
server = tf.train.Server(cluster, job_name="worker", task_index=args.task,
config=tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=2))
run_worker(args, server, cluster)
elif args.job_name == "worker_val":
run_worker_val(args)
else:
server = tf.train.Server(cluster, job_name="ps", task_index=args.task,
config=tf.ConfigProto(device_filters=["/job:ps"]))
while True:
time.sleep(1000)
if __name__ == "__main__":
tf.app.run()