-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPart1_Initial_prompt_test.py
76 lines (55 loc) · 2.71 KB
/
Part1_Initial_prompt_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import (AIMessage,
HumanMessage,
SystemMessage,
BaseMessage)
from langchain.prompts.chat import (
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
import os
from dotenv import load_dotenv
load_dotenv()
BASE_URL = os.environ["BASE_URL"]
DEPLOYMENT_NAME = os.environ["DEPLOYMENT_NAME"]
API_KEY = os.environ["API_KEY"]
model1 = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-05-15",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type="azure",
temperature = 0)
llm = model1
def prompt_categorizer(text:str|None=None, set_of_tasks = set(["Summarization of given Information", "Creative Writing", "Interpret or Write Code",
"Natural Language Question"]) )->str:
string_list = ""
for i in list(set_of_tasks):
string_list += i + "\n"
Sys_Temp = "The User is prompting an Artificial Inteligence Model in a variety of tasks that need to be classified as: {types} \
First, you will decompose the prompt into small specific and concrete tasks, in the following format: \
To accomplish this prompt one needs to do the following tasks: \n \
Task 1: <Summary of task 1> ( <Type of Task 1> ) \n \
... \n \
Task N: <Summary of task N> ( <Type of Task N )"
System_Prompt_template = SystemMessagePromptTemplate.from_template(template = Sys_Temp, )
initial_prompt = System_Prompt_template.format_messages(types = string_list)[0]
messages = [initial_prompt, HumanMessage(content = text)]
result = llm(messages)#.content
messages.append(result)
formatting_prompt = "Good, now take each task presented and from that write a python list in the following form: \
[<Type of task 1>, <Type of task 2>, ... ,<Type of task N>] \
Be sure to respect each element of punctuation and formatting."
Get_Tasks = "Good, now take each task presented and from that write a list in the following form: \
[<Description of Task 1>; <Description of Task 2>; ... ;<Description of Task N>] \
Be sure to separate each task by the character \";\" . Do not include the type of the task in this list."
messages_class = messages +A[( HumanMessage(content = formatting_prompt) )]
messages_tasks = messages + [HumanMessage(content = Get_Tasks)]
result_class = llm(messages_class)
result_class = result_class.content.replace("\"","").replace("\'","").strip("[]").split(", ")
result_tasks = llm(messages_tasks)
result_tasks = result_tasks.content.replace("\"","").replace("\'","").replace("\n","").strip("[]").split("; ")
return zip(result_tasks,result_class)
if "__name__" == "__main__":
AA = prompt_categorizer("Please explain to me the plot of the movie Cars.")
dict(AA)