forked from graphcore-research/unit-scaling-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_sweep.py
200 lines (178 loc) · 7.13 KB
/
run_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
"""Run a multi-axis hyperparameter sweep."""
import copy
import dataclasses
import itertools as it
import multiprocessing
import multiprocessing.pool
import os
import sys
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Union
import scmm as S
# pylint:disable=redefined-outer-name
class Sweeper:
"""Utility for sweeping multiple settings axes."""
def __init__(
self,
settings: Union[S.experiments.Settings, S.experiments.LrSweep],
n_workers: int,
reps: int,
):
self.n_workers = n_workers
self.reps = reps
if isinstance(settings, S.experiments.LrSweep):
self.base_settings = settings.base
self.lr_settings: Optional[S.experiments.LrSweep] = settings
else:
self.base_settings = settings
self.lr_settings = None
self.axes: List[List[Dict[str, Any]]] = []
def add(self, values: Iterable[Dict[str, Any]]) -> None:
"""Add an independent axis to the sweep."""
self.axes.append(list(values))
@staticmethod
def _recursive_assign(
settings: S.experiments.Settings, path: str, value: Any
) -> None:
# Nested lookup
*prefix, last = path.split(".")
node = settings
for key in prefix:
node = getattr(node, key)
# Dataclass type checking
expected_type: Any = {f.name: f.type for f in dataclasses.fields(node)}.get(
last
)
if expected_type is float:
expected_type = (int, float)
if getattr(expected_type, "__origin__", None) is Union:
expected_type = expected_type.__args__
if not isinstance(value, expected_type):
raise ValueError(
f"Expected {path} to be {expected_type}, actual {value} (type {type(value)})"
)
setattr(node, last, value)
@property
def configs(self) -> Iterable[Union[S.experiments.Settings, S.experiments.LrSweep]]:
"""Iterate through all settings configurations included in the sweep."""
for overrides in it.product(*self.axes):
settings = copy.deepcopy(self.base_settings)
for override in overrides:
for path, value in override.items():
self._recursive_assign(settings, path, value)
if self.lr_settings is not None:
yield dataclasses.replace(self.lr_settings, base=settings)
else:
yield settings
def run(self) -> None:
"""Run a parallel sweep."""
# os.environ["TMPDIR"] = "/localdata/tmp"
os.environ["TF_POPLAR_FLAGS"] = (
"--show_progress_bar=false"
f" --executable_cache_path=/a/scratch/{os.environ['USER']}_research/tmp/cache/sweep"
)
with multiprocessing.pool.ThreadPool(self.n_workers) as pool:
for _ in range(self.reps):
for setting in self.configs:
target = (
S.experiments.run
if isinstance(setting, S.experiments.Settings)
else S.experiments.find_learning_rate
)
pool.apply_async(
S.pedal.utility.run_in_subprocess,
kwds=dict(command=target, settings=setting),
)
pool.close()
pool.join()
# Run sweep
# ssub -n 16 -p ipu-large -- python run_sweep.py
if __name__ == "__main__":
settings = S.experiments.Settings(
data=S.experiments.DataSettings(
Path("/home/research-datasets/wikitext103_raw")
),
model=S.models.Settings(
hidden_size=128,
depth=8,
residual=S.models.Residual(norm="pre", alpha="mean"),
sequence=S.models.Attention(
heads=2, head_size=64, frequencies=128, max_period=1024
),
token=S.models.FFN(multiple=4),
dtype="float32",
vocab_size=None, # type:ignore[arg-type]
seed=None, # type:ignore[arg-type]
),
training=S.training.Settings(
batch=S.datasets.BatchSettings(
sequences=8,
sequence_length=256,
overlap_length=32,
loop_seed=None,
),
steps=int(2**19),
valid_interval=int(2**14),
optimiser=S.training.AdamW(
learning_rate=2**-14,
learning_rate_decay=2**-16,
),
loss_scale=1,
),
unit_scale=None,
target=S.pedal.xpu.IpuSettings(
iterations_per_loop=int(2**10),
stochastic_rounding=True,
),
output=S.experiments.OutputSettings(
wandb=True, stderr=False, log=None, checkpoint=None
),
seed=None, # type:ignore[arg-type]
metadata=dict(experiment="20230115_large_p0"),
)
sweeper = Sweeper(
S.experiments.LrSweep(settings, step=2, threshold=0.1, reps=3),
n_workers=16,
reps=1,
)
def _all_settings() -> Iterable[Dict[str, Any]]:
# pylint:disable=too-many-nested-blocks
attention = S.models.Attention(
heads=2, head_size=64, frequencies=128, max_period=1024
)
conv = S.models.Conv(kernel_size=7, groups=8)
rnn = S.models.RNN(rebias=1)
for sequence in [rnn, conv, attention]:
for norm in ["pre", "post"]:
for dtype in ["float16", "float32"]:
for unit_scale in [None, "0.4"]:
for loss_scale in [1, 2048]:
sequence_kind = sequence.kind # type:ignore[attr-defined]
if (
unit_scale or dtype == "float32"
) and loss_scale != 1: # unnecessary
continue
if norm == "post" and sequence_kind != "attention":
continue # only run post-norm for attention
yield {
"model.residual.norm": norm,
"model.depth": 2 if sequence_kind == "rnn" else 8,
"model.sequence": sequence,
"model.dtype": dtype,
"unit_scale": unit_scale,
"training.loss_scale": loss_scale,
"training.optimiser.learning_rate": (
2**-14 if unit_scale is None else 2**-8
),
}
sweeper.add(_all_settings())
# This also runs basic checks on `configs` (e.g. in --dry-run)
print(
f"Sweeping {sum(1 for _ in sweeper.configs)} settings, {sweeper.reps} reps,"
f" as {sweeper.base_settings.metadata['experiment']!r}",
file=sys.stderr,
)
if not set(sys.argv) & {"-d", "--dry-run", "--dryrun"}:
# subprocess.check_call(["ulimit", "-u", "16384"], shell=True)
sweeper.run()