-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgps_wls.h
executable file
·244 lines (201 loc) · 7.48 KB
/
gps_wls.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#define D2R 3.1415926/180.0
#include <nlosExclusion/GNSS_Raw_Array.h>
// std inputs and outputs, fstream
#include <iostream>
#include <string>
#include <fstream>
#include <sstream>
#include <stdlib.h>
#include <iomanip>
// math
#include <math.h>
//time
#include <time.h>
//algorithm
#include <algorithm>
// google eigen
#include <Eigen/Eigen>
#include <Eigen/Dense>
#include<Eigen/Core>
using namespace Eigen;
#define pi_ 3.1415926
#define D2R 3.1415926/180.0
#define minGPSCnt 4
#define minBeidouCnt 1
#define useEleVar 1
#define use_fixed_cov_ar 0
/**
* @brief weighted least square for signle point positioning
* @param eAllSVPositions ((n,4) prn, sx, sy, sz, ) eAllSVPositions ((n,3) PRN CNO Pseudorange)
* @return eWLSSolution 5 unknowns with two clock bias variables
@
*/
Eigen::MatrixXd WeightedLeastSquare_GPS(Eigen::MatrixXd eAllSVPositions, Eigen::MatrixXd eAllMeasurement, nlosExclusion::GNSS_Raw_Array GNSS_data){
Eigen::MatrixXd eWLSSolution;
eWLSSolution.resize(4, 1);
MatrixXd weight_matrix = cofactorMatrixCal_WLS(GNSS_data, "WLS");
/**after read the obs file, one measure is not right**/
int validNumMeasure=0;
std::vector<int> validMeasure;
for (int idx = 0; idx < eAllMeasurement.rows(); idx++){
for (int jdx = 0; jdx < eAllSVPositions.rows(); jdx++){
if (int(eAllMeasurement(idx, 0)) == int(eAllSVPositions(jdx, 0))){
validNumMeasure++;
validMeasure.push_back(int(eAllMeasurement(idx, 0)));
}
}
}
Eigen::MatrixXd validMeasurement; // for WLS
validMeasurement.resize(validNumMeasure,eAllMeasurement.cols());
for (int idx = 0; idx < eAllMeasurement.rows(); idx++){
for (int jdx = 0; jdx < eAllSVPositions.rows(); jdx++){
if (int(eAllMeasurement(idx, 0)) == int(eAllSVPositions(jdx, 0))){
for (int kdx = 0; kdx < eAllMeasurement.cols(); kdx++){
// std::cout<<"satellite prn -> "<<eAllMeasurement(idx, 0)<<"\n"<<std::endl;
validMeasurement(idx, kdx) = eAllMeasurement(idx, kdx);
}
}
}
}
int iNumSV = validMeasurement.rows();
/*Find the received SV and Sort based on the order of Measurement matrix*/
Eigen::MatrixXd eExistingSVPositions; // for WLS
eExistingSVPositions.resize(iNumSV, eAllSVPositions.cols());
for (int idx = 0; idx < validMeasurement.rows(); idx++){
for (int jdx = 0; jdx < eAllSVPositions.rows(); jdx++){
if (int(validMeasurement(idx, 0)) == int(eAllSVPositions(jdx, 0))){
for (int kdx = 0; kdx < eAllSVPositions.cols(); kdx++){
// std::cout<<"satellite prn -> "<<eAllMeasurement(idx, 0)<<"\n"<<std::endl;
eExistingSVPositions(idx, kdx) = eAllSVPositions(jdx, kdx);
}
}
}
}
//Intialize the result by guessing.
for (int idx = 0; idx < eWLSSolution.rows(); idx++){
eWLSSolution(idx, 0) = 0;
}
// for the case of insufficient satellite
if (iNumSV < 5){
std::cout<<"satellite number is not enough" <<std::endl;
return eWLSSolution;
}
bool bWLSConverge = false;
int count = 0;
while (!bWLSConverge)
{
Eigen::MatrixXd eH_Matrix;
eH_Matrix.resize(iNumSV, eWLSSolution.rows());
Eigen::MatrixXd eDeltaPr;
eDeltaPr.resize(iNumSV, 1);
Eigen::MatrixXd eDeltaPos;
eDeltaPos.resize(eWLSSolution.rows(), 1);
for (int idx = 0; idx < iNumSV; idx++){
int prn = int(validMeasurement(idx, 0));
double pr = validMeasurement(idx, 2);
// Calculating Geometric Distance
double rs[3], rr[3], e[3];
double dGeoDistance;
rs[0] = eExistingSVPositions(idx, 1);
rs[1] = eExistingSVPositions(idx, 2);
rs[2] = eExistingSVPositions(idx, 3);
rr[0] = eWLSSolution(0);
rr[1] = eWLSSolution(1);
rr[2] = eWLSSolution(2);
// dGeoDistance = geodist(rs, rr, e);
dGeoDistance = sqrt(pow((rs[0] - rr[0]),2) + pow((rs[1] - rr[1]),2) +pow((rs[2] - rr[2]),2));
double OMGE_ = 7.2921151467E-5;
double CLIGHT_ = 299792458.0;
dGeoDistance = dGeoDistance + OMGE_ * (rs[0]*rr[1]-rs[1]*rr[0])/CLIGHT_;
// Making H matrix
eH_Matrix(idx, 0) = -(rs[0] - rr[0]) / dGeoDistance;
eH_Matrix(idx, 1) = -(rs[1] - rr[1]) / dGeoDistance;
eH_Matrix(idx, 2) = -(rs[2] - rr[2]) / dGeoDistance;
if (PRNisGPS(prn)){
eH_Matrix(idx, 3) = 1;
}
// Making delta pseudorange
double rcv_clk_bias;
if (PRNisGPS(prn)){
rcv_clk_bias = eWLSSolution(3);
}
// double sv_clk_bias = eExistingSVPositions(idx, 4) * CLIGHT;
eDeltaPr(idx, 0) = pr - dGeoDistance + rcv_clk_bias;
//printf("%2d - %f %f %f %f \n", prn, pr, dGeoDistance, eDeltaPr(idx, 0), rcv_clk_bias);
}
// Least Square Estimation
eDeltaPos = (eH_Matrix.transpose() * weight_matrix * eH_Matrix).inverse() * eH_Matrix.transpose() * weight_matrix * eDeltaPr;
//eDeltaPos = eH_Matrix.householderQr().solve(eDeltaPr);
eWLSSolution(0) += eDeltaPos(0);
eWLSSolution(1) += eDeltaPos(1);
eWLSSolution(2) += eDeltaPos(2);
eWLSSolution(3) += eDeltaPos(3);
for (int i = 0; i < 3; ++i){
//printf("%f\n", fabs(eDeltaPos(i)));
if (fabs(eDeltaPos(i)) >1e-4)
{
bWLSConverge = false;
}
else {
bWLSConverge = true;
};
}
count += 1;
if (count > 6)
{
bWLSConverge = true;
std::cout<<" more than 6 times in iterations"<<std::endl;
}
}
// printf("WLS -> (%11.2f,%11.2f,%11.2f)\n\n", eWLSSolution(0), eWLSSolution(1), eWLSSolution(2));
std::cout << std::setprecision(12);
return eWLSSolution;
}
/**
* @brief covariance estimation
* @param nlosExclusion::GNSS_Raw_Array GNSS_data
* @return weight_matrix
@
*/
Eigen::MatrixXd cofactorMatrixCal_WLS(nlosExclusion::GNSS_Raw_Array GNSS_data, std::string method)
{
Eigen::Matrix<double,4,1> parameters;
parameters<<50.0, 30.0, 30.0, 10.0; // loosely coupled
// parameters<<50.0, 30.0, 20.0, 30.0; // loosely coupled
double snr_1 = parameters(0); // T = 50
double snr_A = parameters(1); // A = 30
double snr_a = parameters(2);// a = 30
double snr_0 = parameters(3); // F = 10
VectorXd cofactor_; // cofactor of satellite
cofactor_.resize(GNSS_data.GNSS_Raws.size());
for(int i = 0; i < GNSS_data.GNSS_Raws.size(); i++)
{
if( 1 )
{
double snr_R = GNSS_data.GNSS_Raws[i].snr;
double elR = GNSS_data.GNSS_Raws[i].elevation;
double q_R_1 = 1 / (pow(( sin(elR * 3.1415926/180.0 )),2));
double q_R_2 = pow(10,(-(snr_R - snr_1) / snr_a));
double q_R_3 = (((snr_A / (pow(10,(-(snr_0 - snr_1) / snr_a))) - 1) / (snr_0 - snr_1)) * (snr_R - snr_1) + 1);
double q_R = q_R_1* (q_R_2 * q_R_3);
cofactor_[i]=(1.0/float(q_R)); // uncertainty: cofactor_[i] larger, larger uncertainty
}
}
// cout<<"cofactor_ -> "<<cofactor_<<endl;
MatrixXd weight_matrix;
weight_matrix.resize(GNSS_data.GNSS_Raws.size(),GNSS_data.GNSS_Raws.size());
weight_matrix.setIdentity();
for(int k = 0; k < weight_matrix.rows(); k++)
{
weight_matrix.row(k) = weight_matrix.row(k) * cofactor_(k);
}
if(method == "WLS")
{
return weight_matrix;
}
else
{
weight_matrix.setIdentity();
return weight_matrix;
}
}