forked from makortel/pixel-standalone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyzer_cupla.cc
94 lines (75 loc) · 3.12 KB
/
analyzer_cupla.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include <chrono>
#include <cstring>
#include <iostream>
#include <memory>
/* Do NOT include other headers that use CUDA runtime functions or variables
* before this include, because cupla renames CUDA host functions and device
* built-in variables using macros and macro functions.
* Do NOT include other specific includes such as `<cuda.h>`, etc.
*/
#include <cuda_to_cupla.hpp>
#include "cupla_check.h"
#include "input.h"
#include "modules.h"
#include "output.h"
#include "rawtodigi_cupla.h"
namespace {
constexpr int NLOOPS = 100;
}
namespace CUPLA_ACCELERATOR_NAMESPACE {
void analyze(Input const &input, Output &output, double &totaltime) {
cudaStream_t stream;
cudaStreamCreate(&stream);
totaltime = 0;
for (int i = 0; i <= NLOOPS; ++i) {
output = Output();
#ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
Input *input_d, *input_h;
CUPLA_CHECK(cudaMalloc((void **)&input_d, sizeof(Input)));
CUPLA_CHECK(cudaMallocHost((void **)&input_h, sizeof(Input)));
std::memcpy(input_h, &input, sizeof(Input));
Output *output_d, *output_h;
CUPLA_CHECK(cudaMalloc((void **)&output_d, sizeof(Output)));
CUPLA_CHECK(cudaMallocHost((void **)&output_h, sizeof(Output)));
output_h->err.construct(pixelgpudetails::MAX_FED_WORDS, output_d->err_d);
#else // ALPAKA_ACC_GPU_CUDA_ENABLED
const Input *input_d = &input;
Output *output_d = &output;
#endif // ALPAKA_ACC_GPU_CUDA_ENABLED
auto start = std::chrono::high_resolution_clock::now();
#ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
CUPLA_CHECK(cudaMemcpyAsync(input_d, input_h, sizeof(Input), cudaMemcpyHostToDevice, stream));
CUPLA_CHECK(cudaMemcpyAsync(output_d, output_h, sizeof(Output), cudaMemcpyHostToDevice, stream));
#endif // ALPAKA_ACC_GPU_CUDA_ENABLED
const int threadsPerBlock = 512;
const int blocks = (input.wordCounter + threadsPerBlock - 1) / threadsPerBlock;
if (i == 0) {
std::cout << "blocks per grid: " << blocks << ", threads per block: " << threadsPerBlock << std::endl;
}
CUPLA_KERNEL_OPTI(CUPLA_ACCELERATOR_NAMESPACE::rawtodigi_kernel)
(blocks, threadsPerBlock, 0, stream)(input_d, output_d, true, true, i == 0);
CUPLA_CHECK(cudaGetLastError());
#ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
CUPLA_CHECK(cudaMemcpyAsync(output_h, output_d, sizeof(Output), cudaMemcpyDeviceToHost, stream));
#endif
CUPLA_CHECK(cudaStreamSynchronize(stream));
auto stop = std::chrono::high_resolution_clock::now();
#ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
output_h->err.set_data(output_h->err_d);
std::memcpy(&output, output_h, sizeof(Output));
output.err.set_data(output.err_d);
CUPLA_CHECK(cudaFree(output_d));
CUPLA_CHECK(cudaFree(input_d));
CUPLA_CHECK(cudaFreeHost(output_h));
CUPLA_CHECK(cudaFreeHost(input_h));
#endif // ALPAKA_ACC_GPU_CUDA_ENABLED
auto diff = stop - start;
auto time = std::chrono::duration_cast<std::chrono::microseconds>(diff).count();
if (i != 0) {
totaltime += time;
}
}
totaltime /= NLOOPS;
CUPLA_CHECK(cudaStreamDestroy(stream));
}
} // namespace CUPLA_ACCELERATOR_NAMESPACE