-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_sampler2.py
170 lines (133 loc) · 6.01 KB
/
my_sampler2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import cugraph
import cudf
import dgl
from dgl.sampling import random_walk, pack_traces
import torch
import scipy.sparse
import time
import cupy as cp
import random
import math
import os
import torch as th
import dgl.function as fn
import random
class CugraphSampler(object):
def __init__(self, dn, g, train_nid, node_budget, num_roots, length, num_repeat=50):
"""
:param dn: name of dataset
:param g: full graph
:param train_nid: ids of training nodes
:param node_budget: expected number of sampled nodes
:param num_repeat: number of times of repeating sampling one node
"""
self.g = g
self.train_g: dgl.graph = g.subgraph(train_nid)
self.dn, self.num_repeat = dn, num_repeat
self.node_counter = th.zeros((self.train_g.num_nodes(),))
self.edge_counter = th.zeros((self.train_g.num_edges(),))
self.prob = None
self.num_roots = num_roots
self.length = length
graph_fn, norm_fn = self.__generate_fn__()
if os.path.exists(graph_fn):
self.subgraphs = np.load(graph_fn, allow_pickle=True)
aggr_norm, loss_norm = np.load(norm_fn, allow_pickle=True)
else:
os.makedirs('./subgraphs/', exist_ok=True)
self.subgraphs = []
self.N, sampled_nodes = 0, 0
t = time.perf_counter()
while sampled_nodes <= self.train_g.num_nodes() * num_repeat:
subgraph = self.__sample__()
self.subgraphs.append(subgraph)
sampled_nodes += subgraph.shape[0]
self.N += 1
print(f'Sampling time: [{time.perf_counter() - t:.2f}s]')
# np.save(graph_fn, self.subgraphs)
t = time.perf_counter()
self.__counter__()
aggr_norm, loss_norm = self.__compute_norm__()
print(f'Normalization time: [{time.perf_counter() - t:.2f}s]')
# np.save(norm_fn, (aggr_norm, loss_norm))
self.train_g.ndata['l_n'] = th.Tensor(loss_norm)
self.train_g.edata['w'] = th.Tensor(aggr_norm)
self.__compute_degree_norm()
self.num_batch = math.ceil(self.train_g.num_nodes() / node_budget)
random.shuffle(self.subgraphs)
self.__clear__()
print("The number of subgraphs is: ", len(self.subgraphs))
print("The size of subgraphs is about: ", len(cp.unique(self.subgraphs[-1])))
def __clear__(self):
self.prob = None
self.node_counter = None
self.edge_counter = None
self.g = None
def __counter__(self):
for sampled_nodes in self.subgraphs:
sampled_nodes_df = cudf.DataFrame(sampled_nodes)
sampled_nodes = th.from_numpy(sampled_nodes).long()
self.node_counter[sampled_nodes] += 1
edge_list= cudf.DataFrame()
edge_list['src'] = sampled_nodes_df.drop(sampled_nodes_df.iloc[[(self.length + 1)*i + self.length for i in range(self.num_roots)]].index).reset_index(drop=True)
edge_list['dst'] = sampled_nodes_df.drop(sampled_nodes_df.iloc[[(self.length + 1)*i for i in range(self.num_roots)]].index).reset_index(drop=True)
src_ids = th.tensor(edge_list['src'])
dst_ids = th.tensor(edge_list['dst'])
subg = dgl.graph((src_ids, dst_ids),idtype=th.int64)
# subg = self.train_g.subgraph(sampled_nodes)
# sampled_edges = subg.edata[dgl.EID]
sampled_edges = subg.edge_ids(src_ids.long(), dst_ids.long())
self.edge_counter[sampled_edges] += 1
def __generate_fn__(self):
raise NotImplementedError
def __compute_norm__(self):
self.node_counter[self.node_counter == 0] = 1
self.edge_counter[self.edge_counter == 0] = 1
loss_norm = self.N / self.node_counter / self.train_g.num_nodes()
self.train_g.ndata['n_c'] = self.node_counter
self.train_g.edata['e_c'] = self.edge_counter
self.train_g.apply_edges(fn.v_div_e('n_c', 'e_c', 'a_n'))
aggr_norm = self.train_g.edata.pop('a_n')
self.train_g.ndata.pop('n_c')
self.train_g.edata.pop('e_c')
return aggr_norm.numpy(), loss_norm.numpy()
def __compute_degree_norm(self):
self.train_g.ndata['train_D_norm'] = 1. / self.train_g.in_degrees().float().clamp(min=1).unsqueeze(1)
self.g.ndata['full_D_norm'] = 1. / self.g.in_degrees().float().clamp(min=1).unsqueeze(1)
def __sample__(self):
raise NotImplementedError
def __len__(self):
return self.num_batch
def __iter__(self):
self.n = 0
return self
def __next__(self):
if self.n < self.num_batch:
result = self.train_g.subgraph(self.subgraphs[self.n])
self.n += 1
return result
else:
random.shuffle(self.subgraphs)
raise StopIteration()
# """"
# Define random walk sampler using cuGraph random walk API
# """"
class CugraphRWSampler(CugraphSampler):
def __init__(self, num_roots, length, dn, g, _g, train_nid, num_repeat=50):
self._g = _g
# self.num_roots, self.length = num_roots, length
super(CugraphRWSampler, self).__init__(dn, g, train_nid, num_roots * length, num_roots, length, num_repeat)
def __generate_fn__(self):
graph_fn = os.path.join('./subgraphs/{}_RW_{}_{}_{}.npy'.format(self.dn, self.num_roots,
self.length, self.num_repeat))
norm_fn = os.path.join('./subgraphs/{}_RW_{}_{}_{}_norm.npy'.format(self.dn, self.num_roots,
self.length, self.num_repeat))
return graph_fn, norm_fn
def __sample__(self):
_g_nodes = self._g.nodes().to_array().tolist()
sampled_roots = random.sample(_g_nodes, self.num_roots)
rw_path, _, _= cugraph.random_walks(self._g, sampled_roots, self.length+1)
sampled_nodes = cp.asnumpy(rw_path)
del rw_path
return sampled_nodes