forked from IST-DASLab/gptq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_kernel.py
80 lines (62 loc) · 1.96 KB
/
test_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
import quant_cuda
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
print('Benchmarking OPT-175B FC2 matvec ...')
DEV = torch.device('cuda:0')
M = 12288 * 4
N = 12288
DTYPE = torch.half
mat = torch.randn((M, N), device=DEV, dtype=DTYPE)
vec = torch.randn((1, M), device=DEV, dtype=DTYPE)
mul = torch.zeros((1, N), device=DEV, dtype=DTYPE)
COUNT = 1000
import time
tick = time.time()
for _ in range(COUNT):
torch.matmul(vec, mat, out=mul)
torch.cuda.synchronize()
print('FP16:', (time.time() - tick) / COUNT)
DTYPE = torch.float
mat = mat.to(DTYPE)
vec = vec.to(DTYPE)
mul = mul.to(DTYPE)
mat = torch.randint(-1000000000, 1000000000, (M // 1024 * 96, N), device=DEV, dtype=torch.int)
scales = torch.randn(N, device=DEV, dtype=DTYPE)
zeros = torch.randn(N, device=DEV, dtype=DTYPE)
COUNT = 1000
import time
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant3matmul(vec, mat, mul, scales, zeros)
torch.cuda.synchronize()
print('3bit:', (time.time() - tick) / COUNT)
COUNT = 1000
import time
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant3matmul_faster(vec, mat, mul, scales, zeros)
torch.cuda.synchronize()
print('3bit:', (time.time() - tick) / COUNT, '(faster)')
print('Verifiying kernel correctness ...')
M = 4 * 4096
N = 4096
layer = nn.Linear(M, N)
vec = torch.randn(M).to(DEV)
from quant import *
quantizer = Quantizer()
quantizer.configure(3, perchannel=True, sym=False, mse=False)
quantizer.find_params(layer.weight.data, weight=True)
layer.weight.data = quantize(
layer.weight.data, quantizer.scale, quantizer.zero, quantizer.maxq
)
qlayer = Quant3Linear(layer.in_features, layer.out_features)
qlayer.pack(layer, quantizer.scale, quantizer.zero)
qlayer = qlayer.to(DEV)
layer = layer.to(DEV)
with torch.no_grad():
print('Simu:', layer.to(DEV)(vec))
print('Kern:', qlayer(vec))
qlayer.faster = True
print('Kern:', qlayer(vec.half()), '(faster)')