-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
110 lines (84 loc) · 3.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import csv
import cv2
import numpy as np
import sklearn
from keras.layers import Cropping2D, Dropout
from sklearn.model_selection import train_test_split
from random import shuffle
from keras.models import Sequential
from keras.layers.core import Dense, Flatten, Lambda
from keras.layers.convolutional import Convolution2D
# Read Driving Log
samples = []
with open('./driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
for line in reader:
samples.append(line)
# Tuning Parameters
camera_adjustment = [0.0, 0.2, -0.2]
# Split Data set
train_samples, validation_samples = train_test_split(samples, test_size=0.2)
def generator(samples, batch_size=32):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
images = []
angles = []
for batch_sample in batch_samples:
for i in range(3):
source_path = batch_sample[i]
name = './IMG/'+source_path.split('/')[-1]
center_image = cv2.imread(name)
center_angle = float(batch_sample[3]) + camera_adjustment[i]
images.append(center_image)
angles.append(center_angle)
# Add Flipped Image
images.append(cv2.flip(center_image, 1))
angles.append(center_angle * -1.0)
# trim image to only see section with road
X_train = np.array(images)
y_train = np.array(angles)
yield sklearn.utils.shuffle(X_train, y_train)
batch_size = 32
# compile and train the model using the generator function
train_generator = generator(train_samples, batch_size=batch_size)
validation_generator = generator(validation_samples, batch_size=batch_size)
# Model Architecture
model = Sequential()
# Normalization Layers
model.add(Lambda(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3)))
model.add(Cropping2D(cropping=((70, 25), (0, 0))))
# Convolution Layer 1; 5x5 kernel
model.add(Convolution2D(24, (5, 5), activation='relu', strides=(2, 2)))
# Convolution Layer 2; 5x5 kernel
model.add(Convolution2D(36, (5, 5), activation='relu', strides=(2, 2)))
# Convolution Layer 3; 5x5 kernel
model.add(Convolution2D(48, (5, 5), activation='relu', strides=(2, 2)))
# Convolution Layer 4; 3x3 kernel
model.add(Convolution2D(64, (3, 3), activation='relu'))
# Convolution Layer 1; 3x3 kernel
model.add(Convolution2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dropout(0.3))
# Fully Connected Layers
model.add(Dense(1164, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(100, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(50, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='adam')
model.fit_generator(
train_generator,
steps_per_epoch=len(train_samples) // batch_size,
validation_data=validation_generator,
validation_steps=len(validation_samples) // batch_size,
epochs=20,
verbose=1
)
model.save('model.h5')
exit()