-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_detectron_main.py
405 lines (358 loc) · 15 KB
/
train_detectron_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""Train script for Detectron2.
Code is adapted from train_net.py.
"""
from __future__ import annotations
import logging
import os
import pickle
import sys
import warnings
from collections import OrderedDict
from datetime import timedelta
from typing import Any
import torch
import torchvision
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.data import (
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.data.build import (
RepeatFactorTrainingSampler,
get_detection_dataset_dicts,
)
from detectron2.engine import default_writers, launch
from detectron2.evaluation import (
COCOEvaluator,
inference_on_dataset,
print_csv_format,
)
from detectron2.utils import comm
from detectron2.utils.events import EventStorage
from yolof.checkpoint import YOLOFCheckpointer
import adv_patch_bench.dataloaders.detectron.util as data_util
import adv_patch_bench.utils.docker_bug_fixes # pylint: disable=unused-import
from adv_patch_bench.attacks import attack_util
from adv_patch_bench.dataloaders.detectron import (
mtsd_dataset_mapper,
mtsd_yolo_dataset_mapper,
)
from adv_patch_bench.models.custom_build import build_model
from adv_patch_bench.models.optimizer import build_lr_scheduler, build_optimizer
from adv_patch_bench.transforms.render_image import RenderImage
from adv_patch_bench.transforms.render_object import RenderObject
from adv_patch_bench.utils.argparse import reap_args_parser, setup_detectron_cfg
from adv_patch_bench.utils.types import BatchImageTensor
_EPS = 1e-6
logger = logging.getLogger(__name__)
# This is to ignore a warning from detectron2/structures/keypoints.py:29
warnings.filterwarnings("ignore", category=UserWarning)
def _get_sampler(cfg):
"""Define a custom process to get training sampler.
This error is caused by torch.trunc raising a segfault (floating point
exception) on pytorch docker image. Calling repeat_factors.long() before
passing it to torch.trunc fixes this.
"""
if cfg.DATALOADER.SAMPLER_TRAIN != "RepeatFactorTrainingSampler":
return None
dataset = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=0,
proposal_files=None,
)
repeat_factors = (
RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
dataset, cfg.DATALOADER.REPEAT_THRESHOLD
)
)
# This line is the fix
repeat_factors = repeat_factors.long()
try:
sampler = RepeatFactorTrainingSampler(repeat_factors)
except RuntimeError:
# Handle different CUDA/pytorch version
sampler = RepeatFactorTrainingSampler(repeat_factors.float())
return sampler
# Need cfg/config for launch. pylint: disable=redefined-outer-name
def _get_evaluator(cfg, dataset_name, output_folder=None):
"""Create evaluator."""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, output_dir=output_folder)
# Need cfg/config for launch. pylint: disable=redefined-outer-name
def evaluate(cfg, config, model):
"""Evaluate model (validate or test)."""
_ = config # Unused for now
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
# pylint: disable=missing-kwoa,too-many-function-args
data_loader = build_detection_test_loader(
cfg,
dataset_name,
batch_size=int(cfg.SOLVER.IMS_PER_BATCH / comm.get_world_size()),
)
evaluator = _get_evaluator(
cfg,
dataset_name,
os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name),
)
results_i = inference_on_dataset(model, data_loader, evaluator)
results[dataset_name] = results_i
if comm.is_main_process():
logger.info(
"Evaluation results for %s in csv format:", dataset_name
)
print_csv_format(results_i)
if len(results) == 1:
results = list(results.values())[0]
return results
# Need cfg/config for launch. pylint: disable=redefined-outer-name
def train(cfg, config, model, attack):
"""Main training loop."""
config_base = config["base"]
use_attack: bool = config_base["attack_type"] != "none"
train_dataset = cfg.DATASETS.TRAIN[0]
use_ddp = torch.distributed.is_initialized()
rimg_kwargs: dict[str, Any] = {
"img_mode": cfg.INPUT.FORMAT,
"interp": config_base["interp"],
"img_aug_prob_geo": config_base["img_aug_prob_geo"],
"device": model.device,
"obj_class": config_base["obj_class"],
"mode": config_base["dataset"].split("-")[0],
}
robj_kwargs = {
"dataset": config_base["dataset"],
"obj_size_px": config_base["obj_size_px"],
"interp": config_base["interp"],
**{k: v for k, v in config_base.items() if "reap" in k},
}
# Get augmentation for mask only
_, trn_aug_mask, trn_aug_color = RenderObject.get_augmentation(
config["attack"]["common"], "nearest"
)
model.train()
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
if cfg.MODEL.META_ARCHITECTURE == "YOLOF":
checkpointer_fn = YOLOFCheckpointer
else:
checkpointer_fn = DetectionCheckpointer
checkpointer = checkpointer_fn(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
if config_base["resume"]:
# If resume, load from last checkpoint
weight_path = checkpointer.get_checkpoint_file()
start_iter = checkpointer.resume_or_load(weight_path, resume=True).get(
"iteration", -1
)
scheduler.last_epoch = start_iter
else:
# If not resume, load from specified weight and start from itearation 0
checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=False)
start_iter = -1
start_iter += 1
max_iter = cfg.SOLVER.MAX_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
default_writers(cfg.OUTPUT_DIR, max_iter)
if comm.is_main_process()
else []
)
# Create patch masks (and load adv_patches if attack-type is load)
logger.info("Preparing adversarial patches and masks (if applicable)...")
adv_patches, patch_masks = attack_util.prep_adv_patch_all_classes(
dataset=train_dataset,
attack_type=config_base["attack_type"],
patch_size=config_base["patch_size"],
obj_width_px=config_base["obj_size_px"][1],
)
for i, (adv_patch, patch_mask) in enumerate(zip(adv_patches, patch_masks)):
if adv_patch is not None:
adv_patches[i] = adv_patch.to(model.device)
if patch_mask is not None:
patch_masks[i] = patch_mask.to(model.device)
# Initialize and load cached adv_patch_cache when resuming
adv_patch_cache = {}
cache_file_name = f"{cfg.OUTPUT_DIR}/trn_adv_patch_cache.pkl"
if (
start_iter > 10
and config_base["attack_type"] == "per-sign"
and os.path.isfile(cache_file_name)
):
logger.info("Loading cached adv_patch from %s", cache_file_name)
with open(cache_file_name, "rb") as file:
try:
adv_patch_cache = pickle.load(file)
except pickle.UnpicklingError:
logger.warning(
"Failed to load adv_patch_cache. Initializing "
"adv_patch_cache from scratch."
)
sampler = _get_sampler(cfg)
if cfg.MODEL.META_ARCHITECTURE == "YOLOF":
logger.info("Using YOLOF dataset mapper")
dataset_mapper_fn = mtsd_yolo_dataset_mapper.MtsdYoloDatasetMapper
else:
dataset_mapper_fn = mtsd_dataset_mapper.MtsdDatasetMapper
# pylint: disable=missing-kwoa,too-many-function-args
data_loader = build_detection_train_loader(
cfg,
sampler=sampler,
mapper=dataset_mapper_fn(
cfg,
config_base=config_base,
is_train=True,
img_size=config_base["img_size"],
),
)
logger.info("Starting training from iteration %d", start_iter)
with EventStorage(start_iter) as storage:
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
storage.iter = iteration
batch_size = len(data)
data_adv = data
if config_base["use_mixed_batch"] and not use_ddp:
# This only works for single GPU training. Trying to have an
# uneven batch size for DDP will hang indefinitely. When DDP is
# used, we run attack on the entire batch.
assert len(data) > 1, "Mixed batch requires at least 2 samples!"
data_adv = data[: batch_size // 2]
data = data[batch_size // 2 :]
if use_attack:
# Create image wrapper that handles tranforms
rimg: RenderImage = RenderImage(
samples=data_adv, robj_kwargs=robj_kwargs, **rimg_kwargs
)
if rimg.num_objs > 0:
# Collect patch mask for each class because relative patch
# size varies between classes
cur_patch_mask = [patch_masks[i] for i in rimg.obj_classes]
cur_patch_mask = torch.cat(cur_patch_mask, dim=0)
assert len(cur_patch_mask) == rimg.num_objs
# Apply geometric augmentation to adversarial patch mask
cur_patch_mask = trn_aug_mask(cur_patch_mask)
if config_base["attack_type"] == "per-sign":
# Load cached adversarial patches
init_adv_patch = [
adv_patch_cache.get(oid) for oid in rimg.obj_ids
]
# Generate per-sign patch for adversarial training
cur_adv_patch: BatchImageTensor = attack(
rimg,
cur_patch_mask,
batch_mode=True,
init_adv_patch=init_adv_patch,
)
# Cache generated adversarial patches for next epoch
adv_patch_cpu = cur_adv_patch.cpu()
for patch, oid in zip(adv_patch_cpu, rimg.obj_ids):
adv_patch_cache[oid] = patch.cpu()
else:
cur_adv_patch = [
adv_patches[i] for i in rimg.obj_classes
]
cur_adv_patch = torch.cat(cur_adv_patch, dim=0)
cur_adv_patch.clamp_(0 + _EPS, 1 - _EPS)
# Apply color augmentation to adversarial patch
cur_adv_patch = trn_aug_color(cur_adv_patch)
img_render, data_adv = rimg.apply_objects(
cur_adv_patch, cur_patch_mask
)
if config_base["debug"]:
logger.debug(
"Saving debug training batch %d...", iteration
)
torchvision.utils.save_image(
img_render, f"tmp_train_debug_{iteration:05d}.png"
)
img_render = rimg.post_process_image(img_render)
for i, dataset_dict in enumerate(data_adv):
dataset_dict["image"] = img_render[i]
if config_base["use_mixed_batch"] and not use_ddp:
data = [*data_adv, *data]
elif config_base["use_mixed_batch"]:
data = [*data_adv[:batch_size // 2], *data[batch_size // 2:]]
else:
# Normal training or adversarial training w/o use_mixed_batch
data = data_adv
loss_dict = model(data)
losses = sum(loss_dict.values())
assert torch.isfinite(
losses
).all(), f"Loss diverges; Something went wrong\n{loss_dict}"
loss_dict_reduced = {
k: v.item() for k, v in comm.reduce_dict(loss_dict).items()
}
if comm.is_main_process():
losses_reduced = sum(loss_dict_reduced.values())
storage.put_scalars(
total_loss=losses_reduced, **loss_dict_reduced
)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar(
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False
)
scheduler.step()
if (
cfg.TEST.EVAL_PERIOD > 0
and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter - 1
):
evaluate(cfg, config, model)
# Compared to "train_net.py", the test results are not dumped
# to EventStorage
comm.synchronize()
if iteration - start_iter > 5 and (
(iteration + 1) % 20 == 0 or iteration == max_iter - 1
):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
if (iteration + 1) % periodic_checkpointer.period == 0:
# Manually checkpoint cached adv patch
with open(cache_file_name, "wb") as file:
pickle.dump(adv_patch_cache, file)
# Need cfg/config for launch. pylint: disable=redefined-outer-name
def main(config):
"""Main function."""
cfg = setup_detectron_cfg(config, is_train=True)
# Set logging config
logging.basicConfig(
stream=sys.stdout,
format="[%(asctime)s - %(name)s - %(levelname)s]: %(message)s",
level=config["base"]["verbosity"],
)
logger.setLevel(config["base"]["verbosity"])
logging.getLogger("detectron2").setLevel(config["base"]["verbosity"])
logging.getLogger("fvcore").setLevel(config["base"]["verbosity"])
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.getLogger("PIL").setLevel(logging.WARNING)
data_util.register_dataset(config["base"])
logger.info("Building model...")
model = build_model(cfg)
logger.info("Model:\n%s", model)
# Set up attack for adversarial training
attack = attack_util.setup_attack(config=config, model=model)
train(cfg, config, model, attack)
logger.info("Start final testing...")
return evaluate(cfg, config, model)
if __name__ == "__main__":
config: dict[str, dict[str, Any]] = reap_args_parser(
True, is_gen_patch=False, is_train=True
)
launch(
main,
config["base"]["num_gpus"],
num_machines=config["base"]["num_machines"],
machine_rank=config["base"]["machine_rank"],
dist_url=config["base"]["dist_url"],
args=(config,),
timeout=timedelta(hours=2), # Set custom timeout
)