-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_bpda.py
208 lines (165 loc) · 6.7 KB
/
train_bpda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
'''Train BPDA model'''
from __future__ import print_function
import argparse
import os
import pprint
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import yaml
from adv.wrappers.transform import get_transform, init_transform, name_to_init_tf
from adv.models.bpda import parse_bpda_name, get_bpda_network
from adv.utils import (get_logger, set_random_seed,
load_dataset, parse_model_name)
def forward(transform, net, criterion, x):
x_new, params = transform(x)
x_pred = net(x, params)
loss = criterion(x_pred, x_new)
return x_pred, loss
def evaluate(transform, net, dataloader, criterion, config, device):
"""Evaluate network."""
net.eval()
val_cum_loss = 0
val_total = 0
with torch.no_grad():
for batch_idx, (x, targets) in enumerate(dataloader):
x = x.to(device)
size = x.shape[0]
_, loss = forward(transform, net, criterion, x)
val_cum_loss += loss.item()
val_total += size
return val_cum_loss / val_total
def train(transform, net, trainloader, validloader, criterion, optimizer,
config, epoch, device, log, best_loss, model_path, lr_scheduler=None,
log_freq=1000):
"""Main training function."""
row_coords = None
col_coords = None
net.train()
train_cum_loss = 0
train_total = 0
for batch_idx, (x, targets) in enumerate(trainloader):
x = x.to(device)
size = x.shape[0]
optimizer.zero_grad()
_, loss = forward(transform, net, criterion, x)
train_cum_loss += loss.item()
train_total += size
loss.backward()
optimizer.step()
if batch_idx % log_freq == log_freq - 1:
train_loss = train_cum_loss / train_total
train_cum_loss = 0
train_total = 0
log.info(f"Train loss: {train_loss}")
train_loss = train_cum_loss / train_total
val_loss = evaluate(transform, net, validloader, criterion, config,
device)
log.info(f"Train loss: {train_loss}, Valid loss: {val_loss}")
state_dict = net.state_dict()
if not config['meta']['save_best_only']:
# Save model every <save_epochs> epochs
if epoch % config['meta']['save_epochs'] == 0:
log.info('Saving model...')
torch.save(state_dict, model_path + '_epoch%d.pt' % epoch)
elif config['meta']['save_best_only'] and val_loss < best_loss:
# Save only the model with the highest adversarial accuracy
log.info('Saving model...')
torch.save(state_dict, model_path + '.pt')
best_loss = val_loss
return best_loss
def main(config_file):
"""Main function. Use config file train_bpda.yml"""
# Parse config file
with open(config_file, 'r') as stream:
config = yaml.safe_load(stream)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = config['meta']['gpu_id']
# Training parameters
epochs = config['meta']['epochs']
lr = config['meta']['learning_rate']
tf = config['transform']
config[tf]['input_size'] = 224
if tf in name_to_init_tf:
module = init_transform(tf, config[tf])
else:
module = None
transform = get_transform(tf, config[tf], module=module)
# Set all random seeds
set_random_seed(config['meta']['seed'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Set up model directory
bpda_name = parse_bpda_name(config)
save_dir = os.path.join(
config['meta']['save_path'], 'saved_models', bpda_name)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, 'model')
model_params_path = os.path.join(save_dir, 'transform.yml')
with open(model_params_path, 'w') as file:
yaml.dump(config, file)
# Set up logger
log = get_logger(bpda_name, 'logs')
log.info('\n%s', pprint.pformat(config))
# Load dataset
log.info('Preparing data...')
(trainloader, validloader, testloader), num_classes = load_dataset(config, 'train')
# Build neural network
log.info('Building model...')
net = get_bpda_network(config[tf])
net = net.to(device)
# If GPU is available, allows parallel computation and cudnn speed-up
# if device == 'cuda':
# net = nn.DataParallel(net)
# cudnn.benchmark = True
# Specify loss function of the network
criterion = nn.MSELoss()
# Set up optimizer
if config['meta']['optimizer'] == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9,
weight_decay=config['meta']['l2_reg'])
elif config['meta']['optimizer'] == 'adam':
optimizer = optim.Adam(net.parameters(), lr=lr,
weight_decay=config['meta']['l2_reg'])
else:
raise NotImplementedError('Optimizer not implemented.')
# Set up learning rate schedule
if config['meta']['lr_scheduler'] == 'cyclic':
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, lr, epochs=epochs, steps_per_epoch=422,
pct_start=0.5, anneal_strategy='linear', cycle_momentum=False,
base_momentum=0.9, div_factor=1e5, final_div_factor=1e5)
elif config['meta']['lr_scheduler'] == 'step':
if epochs <= 70:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, [40, 50, 60], gamma=0.1)
elif epochs <= 100:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, [40, 60, 80], gamma=0.1)
elif epochs <= 160:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, [60, 80, 100, 120, 140], gamma=0.2)
else:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, [60, 120, 160], gamma=0.2)
else:
lr_scheduler = None
# Starting the main training loop over epochs
best_loss = np.inf
for epoch in range(epochs):
best_loss = train(transform, net, trainloader, validloader, criterion,
optimizer, config, epoch, device, log, best_loss,
model_path, lr_scheduler=lr_scheduler)
if config['meta']['lr_scheduler'] == 'step':
lr_scheduler.step()
# Evaluate network on clean data
test_loss = evaluate(transform, net, testloader, criterion, config, device)
log.info('Test loss: %.4f', test_loss)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train BPDA')
parser.add_argument(
'config_file', type=str, help='name of config file')
args = parser.parse_args()
main(args.config_file)