-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
60 lines (46 loc) · 2.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
'''Train MNIST model with adversarial training'''
from __future__ import print_function
import argparse
import os
import torch.backends.cudnn as cudnn
import yaml
from adv.utils import save_outputs
from adv.utils.test_utils import main_test
from adv.utils.train_utils import main_train
from adv.wrappers import RandWrapper
def main(config_file):
"""Main function. Use config file train_and_test_DATASET.yml"""
# Set CUDNN param
cudnn.benchmark = True
# Parse config file
with open(config_file, 'r') as stream:
config = yaml.safe_load(stream)
if config['rand'].get('same_on_batch', False):
for mode in ('train', 'test', 'attack'):
config['rand'][mode]['num_draws'] = 1
config['rand'][mode]['rule'] = 'none'
config['rand'][mode]['tf_order'] = 'fixed'
config['rand'][mode]['fix_seed'] = True
# Call main train function
net, config, (_, _, testloader), log = main_train(config, load_config=True)
if isinstance(net.module, RandWrapper):
config['rand']['use_saved_transforms'] = True
if not config['rand'].get('same_on_batch', False):
net.module.params['test']['num_draws'] = 20
net.module.params['test']['tf_order'] = 'random'
config['meta']['test']['num_conf_repeats'] = 10
return_output = config['meta']['test']['save_clean_out'] or \
config['meta']['test']['save_adv_out']
# Call main test function
outputs = main_test(config, net, testloader, 'test', log,
return_adv=config['meta']['test']['save_adv'],
return_output=return_output,
clean_only=config['meta']['test']['clean_only'])
# Save specified outputs
save_outputs(config, outputs)
log.info('Finished.')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train a model.')
parser.add_argument('config_file', type=str, help='name of config file')
args = parser.parse_args()
main(args.config_file)