-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch05_TFwH_Bird_5A_matrix-sum.hs
282 lines (234 loc) · 13.3 KB
/
ch05_TFwH_Bird_5A_matrix-sum.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
-- Chapter 5 Exercise A: Matrix operations
-- Thinking Functionally with Haskell (Richard Bird)
-- Vince Reuter
-- June 2019
import Data.Bifunctor -- bimap
import Data.Either -- isLeft, isRight, etc.
import Test.QuickCheck -- forAll, ==>, etc.
import Test.QuickCheck.Instances.Tuple -- >*< (Gen a -> Gen b -> (Gen (a, b)))
--------------------------------------------------------
-- Types -----------------------------------------------
--------------------------------------------------------
type Row a = [a]
type Matrix a = [Row a]
type FirstBadIndex = Either Int Int
type AddRowRes a = Either (Row a, FirstBadIndex) (Row a)
data MatDim = MatDim Int Int deriving Eq
instance Show MatDim where
show (MatDim r c) = show r ++ "x" ++ show c
-----------------------
-- Primary functions --
-----------------------
-- Vector sum, basic/simple implementation
addRows :: Num a => Row a -> Row a -> Row a
addRows = zipWith (+)
-- Vector sum with assurance of length match
addRowsMatch :: Num a => Row a -> Row a -> AddRowRes a
-- In either outcome case/"side", reverse the list (i.e., whether it's a partial or full result).
-- In the Left side, preserve the index as-is; the integral value stored in the Either is the
-- index of the first position in one row without a counterpart in the other (i.e., ) the
-- length of the shorter of the 2 rows. The case of the Either it's wrapped in indicates
-- which input row was shorter.
addRowsMatch r1 r2 = bimap (\(r, i) -> (reverse r, i)) reverse (go r1 r2 0 (Right []))
-- Once we've hit a Left, we're stuck (row length mismatch)
where go _ _ _ (Left res) = Left res
-- If either row is empty, we've arrived at a result; it's Right iff both are exhausted.
go [] [] _ (Right res) = Right res
go [] _ i (Right acc) = Left (acc, Left i)
go _ [] i (Right acc) = Left (acc, Right i)
-- Increment index and recurse on list tails, consing sum onto accumulator.
go (x:xs) (y:ys) i (Right acc) = go xs ys (i+1) (Right ((x+y):acc))
-- Sum a pair of matrices.
addMats :: Num a => Matrix a -> Matrix a -> Matrix a
addMats = zipWith addRows
-- Increment by a fixed amount each entry in a matrix.
incrementEntries :: Num a => a -> Matrix a -> Matrix a
incrementEntries x = map (map (+x))
--------------------------------------------------------------------------------------
--------------------------------------------------
-- Row-/vector-wise generators and propositions --
--------------------------------------------------
--prop_RowsSumComponentWise :: Row a -> Row a -> Bool
prop_RowsSumComponentWise r1 r2 = [x + y | (x, y) <- r1 `zip` r2] == addRows r1 r2
where types = (r1 :: Row Int, r2 :: Row Int)
-- Randomly generate a pair of same-length rows.
genFlushRows :: Num a => Gen a -> Gen (Row a, Row a)
genFlushRows g = sized $ \n ->
do k <- choose (0, n)
r1 <- vectorOf k g
r2 <- vectorOf k g
return (r1, r2)
-- Randomly generate a list of elements that's arbitrarily shorter than the given list.
genShorter :: Arbitrary a => [a] -> Gen [a]
genShorter [] = error "Cannot generate shorter than empty list."
genShorter (_:xs) = do k <- choose (0, length xs)
vectorOf k arbitrary
-- For pair of rows that differ in length, sum results in a Left-wrapped value.
prop_RaggedRowsSumToALeft r1 r2 = length r1 /= length r2 ==> isLeft $ addRowsMatch r1 r2
-- For pair of rows that match in length, sum result in a Right-wrapped value.
prop_FlushRowsSumToARight r1 = forAll (vectorOf (length r1) arbitrary) $ \r2 -> isRight $ addRowsMatch r1 r2
-- For pair of rows that differ in length, the size of the smaller row which row is smaller are correct.
prop_ShorterRowCorrect r1 = not (null r1) ==>
forAll (genShorter r1) $ \r2 ->
-- r2 is shorter than r1, so the assertion must hold iff:
-- 1. The row sum is a Left (indicating failure / partial result)
-- 2. The first-problematic-index is the length of the shorter row
-- 3. The smaller row is correctly identified (communicated by the particular instance of the Either;
-- a Right-wrapped index here is expected is r2 is shorter and is the right-hand operand).
case addRowsMatch r1 r2 of Right _ -> False
Left (_, Left _) -> False
Left (_, Right i) -> i == length r2
----------------------------------------------------------------------
-----------------------------------------------------
-- Matrix generation, properties, and propositions --
-----------------------------------------------------
-- Determine whether each list is the same size.
sameSizeN :: Integral a => a -> [[b]] -> Bool
sameSizeN n = and . map ((==n) . fromIntegral . length)
-- Randomly generate an arbitrarily large square matrix.
genSquareMatrix :: Gen (Matrix Int)
genSquareMatrix = sized $ \n -> genSquareMatrixN n
-- Randomly generate a square matrix of given row/column count.
genSquareMatrixN :: (Arbitrary a, Num a) => Int -> Gen (Matrix a)
genSquareMatrixN n
| n < 0 = error ("Requested negative dimension for square matrix: " ++ show n)
| otherwise = vectorOf n (vectorOf n arbitrary)
-- Generate a pair of identically sized square matrices.
genSquareMatrixPair :: (Arbitrary a, Num a) => Gen (Matrix a, Matrix a)
genSquareMatrixPair = sized $ \n ->
do k <- choose (0, n)
m1 <- genSquareMatrixN n
m2 <- genSquareMatrixN n
return (m1, m2)
-- Check whether a matrix is square.
-- A matrix is squar if it's empty/null or if each's row's size equals the number of rows.
isSquare :: [[a]] -> Bool
isSquare m = case length m of 0 -> True
r -> (and . map (== r)) (map length m)
-- Any allegedly square matrix generated is in fact square.
prop_SquareIsSquare = forAll genSquareMatrix $ \m -> isSquare m
-- Generate matrix with at least a certain number of rows and columns.
-- 1st argument is inclusive lower bound on row count.
-- 2nd argument is inclusive lower bound on column count.
genMatMinSize :: (Arbitrary a, Num a) => Int -> Int -> Gen (Matrix a)
genMatMinSize minR minC
| minR < 0 || minC < 0 = error ("Negative lower bound(s) on matrix dims: " ++ (show (MatDim minR minC)))
| otherwise = sized $ \n -> do r <- choose (minR, n)
c <- choose (minC, n)
genMatFixedSize r c
-- Randomly generate a numeric matrix of a particular, fixed size.
-- 1st argument is row count and 2nd argument is column count.
-- Both row count and column count must be nonnegative.
genMatFixedSize :: (Arbitrary a, Num a) => Int -> Int -> Gen (Matrix a)
genMatFixedSize r c
| r < 0 || c < 0 = error ("Negative matrix dims request: " ++ (show (MatDim r c)))
| otherwise = vectorOf r (vectorOf c arbitrary)
-- Randomly generate arbitrarily sized numeric matrix, and include its dimensions.
genMatWithDimsNonempty :: (Arbitrary a, Num a) => Gen (MatDim, Matrix a)
genMatWithDimsNonempty = sized $ \n ->
do r <- choose (1, max n 1)
c <- choose (1, max n 1)
m <- genMatFixedSize r c
return (MatDim r c, m)
-- Verify expected dimensions of a randomly generated, arbitrarily sized numeric matrix.
prop_GenMatFixedSizeCarriesCorrectDimensions =
forAll (genMatWithDimsNonempty :: Gen (MatDim, Matrix Int)) $ \(MatDim r c, m) ->
if null m then r == 0 && c == 0 else length m == r && length (head m) == c && sameSizeN c m
-- Nonempty matrix generation never generates empty matrix.
prop_GenMatWithDimsNonemptyIsNonempty =
forAll (genMatWithDimsNonempty :: Gen (MatDim, Matrix Int)) $ \(_, m) ->
not (null m || null (head m))
-- Randomly generate a pair of numeric matrices with the same dimension.
genMatPairSameDims :: (Arbitrary a, Num a) => Gen (Matrix a, Matrix a)
genMatPairSameDims = sized $ \n ->
do r <- choose (0, n)
c <- choose (0, n)
(genMatFixedSize r c) >*< (genMatFixedSize r c)
-- Two matrices have the same dimension iff both are empty or both have same number
-- of rows, the first rows match in length, and both are rectangular.
sameDims :: Matrix a -> Matrix a -> Bool
sameDims [] [] = True
sameDims [] _ = False
sameDims _ [] = False
sameDims m@(r:rs) m'@(r':rs') =
(length m == length m') && (c == length r') && rect rs && rect rs'
where c = length r
rect = sameSizeN (fromIntegral c)
eqvFlatSum :: (Eq a, Num a) => Matrix a -> Matrix a -> Bool
eqvFlatSum m1 m2 = zipWith (+) (concat m1) (concat m2) == concat (addMats m1 m2)
-- Check that any pair of allegedly same-sized square matrices do match on size.
prop_SquareMatrixPairIsSameSize =
forAll (genSquareMatrixPair :: Gen (Matrix Int, Matrix Int)) $ \(m1, m2) -> sameDims m1 m2
-- Check that the matrices in any pair of matrices (square or not) with allegedly same dims
-- do in fact match with respect to dimension.
prop_SameSizeMatrixPairIsSameSize =
forAll (genMatPairSameDims :: Gen (Matrix Int, Matrix Int)) $ \(m1, m2) -> sameDims m1 m2
-- BUGGY!
-- Attempt assertion that summing flattened matrices is equivalent to flattening their sum.
-- This is FALSE (the matrix generation process is insufficiently constrained for the
-- implicit universal quantification to hold / be satisfied.)
prop_FlattenMatrixSum m1 m2 = zipWith (+) (concat m1) (concat m2) == concat (addMats m1 m2)
where types = (m1 :: Matrix Int, m2 :: Matrix Int)
-- FIXED!
-- Randomly generate a pair of square matrices with matching dimension, and check
-- the sum flattening equivalence only over restricted domain of matrix pairs.
-- This is TRUE (i.e., flattened sum formulations of square matrices of the same size are equivalent.)
prop_MatchedDimsSquareMatrixSum =
forAll (genSquareMatrixPair :: Gen (Matrix Int, Matrix Int)) $ \(m1, m2) -> eqvFlatSum m1 m2
-- Proposition of equivalence between matrix sum formulations, with matrices restricted to match in dimension.
-- This is TRUE (i.e., matrix dimension match --> flattened sum formulations match.)
-- NOTE: this is a more general result than the square matrix proposition (prop_MatchedDimsSquareMatrixSum).
prop_FlatSumSameDimsMats =
forAll (genMatPairSameDims :: Gen (Matrix Int, Matrix Int)) $ \(m1, m2) -> eqvFlatSum m1 m2
-----------------------------------------------------------------------------------------------
---------------------------------------------------------------------
-- Matrix pairs in which row counts match but column counts differ --
---------------------------------------------------------------------
-- Generate matrices that match on column count but differ in row count.
genDiffRowSameColMatrices :: (Arbitrary a, Num a) => Gen (Matrix a, Matrix a)
genDiffRowSameColMatrices = sized $ \n ->
let maxR = max n 2
in do c <- choose (1, max n 1) -- Diff row count but same col count precludes empty matrix.
r1 <- choose (1, maxR) -- Allow "space" for a different r2.
r2 <- suchThat (choose (1, maxR)) (/= r1)
m1 <- genMatFixedSize r1 c
m2 <- genMatFixedSize r2 c
return (m1, m2)
-- Validate shape/dimension properties of generation of pairs of matrices in
-- which the row counts should differ but the column counts should match.
prop_DiffRowSameColMatPairGenIsCorrect =
noShrinking $ forAll (genDiffRowSameColMatrices :: Gen (Matrix Int, Matrix Int)) $ \(m1, m2) ->
case (m1, m2) of ([], _) -> False
(_, []) -> False
_ -> (length m1 /= length m2) &&
(let c1 = fromIntegral(length(head(m1)))
in (sameSizeN c1 m1) && (sameSizeN c1 m2))
-- So long as column counts match, flattened sum formulations are equivalent.
-- This is TRUE: the "lesser-list" rule for zipping applies, leading the
-- flattened sums to be equivalent since either order of the truncation of
-- the longer list still results in a vector with the first (R x C) entries.
prop_DiffRowSameColMatricesHaveEquivalentFlattenedSums =
forAll (genDiffRowSameColMatrices :: Gen (Matrix Int, Matrix Int)) $ \(m1, m2) -> eqvFlatSum m1 m2
------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------
-- Matrix pairs in which row counts match but column counts differ --
---------------------------------------------------------------------
-- Randomly generate pair of matrices with same row count but different column count.
genSameRowDiffColMatrices :: (Arbitrary a, Num a) => Gen (Matrix a, Matrix a)
genSameRowDiffColMatrices= sized $ \n ->
let maxC = max n 2
in do r <- choose (1, max n 1)
c1 <- choose (1, maxC)
c2 <- suchThat (choose (1, maxC)) (/= c1)
m1 <- genMatFixedSize r c1
m2 <- genMatFixedSize r c2
return (m1, m2)
-- Validate random generation of pairs of matrices with same row count and different
-- column count.
prop_SameRowDiffColGenIsCorrect =
forAll (genSameRowDiffColMatrices :: Gen (Matrix Int, Matrix Int)) $ \(m1, m2) ->
case (m1, m2) of ([], _) -> False
(_, []) -> False
_ -> let nc = length . head
(c1, c2) = (nc m1, nc m2)
in c1 /= c2 && sameSizeN c1 m1 && sameSizeN c2 m2