forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
executable file
·326 lines (279 loc) · 12.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model is responsible for setting up Tensorflow graph.
Creates policy and value networks. Also sets up all optimization
ops, including gradient ops, trust region ops, and value optimizers.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class Model(object):
def __init__(self, env_spec, global_step,
target_network_lag=0.95,
sample_from='online',
get_policy=None,
get_baseline=None,
get_objective=None,
get_trust_region_p_opt=None,
get_value_opt=None):
self.env_spec = env_spec
self.global_step = global_step
self.inc_global_step = self.global_step.assign_add(1)
self.target_network_lag = target_network_lag
self.sample_from = sample_from
self.policy = get_policy()
self.baseline = get_baseline()
self.objective = get_objective()
self.baseline.eps_lambda = self.objective.eps_lambda # TODO: do this better
self.trust_region_policy_opt = get_trust_region_p_opt()
self.value_opt = get_value_opt()
def setup_placeholders(self):
"""Create the Tensorflow placeholders."""
# summary placeholder
self.avg_episode_reward = tf.placeholder(
tf.float32, [], 'avg_episode_reward')
self.greedy_episode_reward = tf.placeholder(
tf.float32, [], 'greedy_episode_reward')
# sampling placeholders
self.internal_state = tf.placeholder(tf.float32,
[None, self.policy.rnn_state_dim],
'internal_state')
self.single_observation = []
for i, (obs_dim, obs_type) in enumerate(self.env_spec.obs_dims_and_types):
if self.env_spec.is_discrete(obs_type):
self.single_observation.append(
tf.placeholder(tf.int32, [None], 'obs%d' % i))
elif self.env_spec.is_box(obs_type):
self.single_observation.append(
tf.placeholder(tf.float32, [None, obs_dim], 'obs%d' % i))
else:
assert False
self.single_action = []
for i, (action_dim, action_type) in \
enumerate(self.env_spec.act_dims_and_types):
if self.env_spec.is_discrete(action_type):
self.single_action.append(
tf.placeholder(tf.int32, [None], 'act%d' % i))
elif self.env_spec.is_box(action_type):
self.single_action.append(
tf.placeholder(tf.float32, [None, action_dim], 'act%d' % i))
else:
assert False
# training placeholders
self.observations = []
for i, (obs_dim, obs_type) in enumerate(self.env_spec.obs_dims_and_types):
if self.env_spec.is_discrete(obs_type):
self.observations.append(
tf.placeholder(tf.int32, [None, None], 'all_obs%d' % i))
else:
self.observations.append(
tf.placeholder(tf.float32, [None, None, obs_dim], 'all_obs%d' % i))
self.actions = []
self.other_logits = []
for i, (action_dim, action_type) in \
enumerate(self.env_spec.act_dims_and_types):
if self.env_spec.is_discrete(action_type):
self.actions.append(
tf.placeholder(tf.int32, [None, None], 'all_act%d' % i))
if self.env_spec.is_box(action_type):
self.actions.append(
tf.placeholder(tf.float32, [None, None, action_dim],
'all_act%d' % i))
self.other_logits.append(
tf.placeholder(tf.float32, [None, None, None],
'other_logits%d' % i))
self.rewards = tf.placeholder(tf.float32, [None, None], 'rewards')
self.terminated = tf.placeholder(tf.float32, [None], 'terminated')
self.pads = tf.placeholder(tf.float32, [None, None], 'pads')
self.prev_log_probs = tf.placeholder(tf.float32, [None, None],
'prev_log_probs')
def setup(self, train=True):
"""Setup Tensorflow Graph."""
self.setup_placeholders()
tf.summary.scalar('avg_episode_reward', self.avg_episode_reward)
tf.summary.scalar('greedy_episode_reward', self.greedy_episode_reward)
with tf.variable_scope('model', reuse=None):
# policy network
with tf.variable_scope('policy_net'):
(self.policy_internal_states, self.logits, self.log_probs,
self.entropies, self.self_kls) = \
self.policy.multi_step(self.observations,
self.internal_state,
self.actions)
self.out_log_probs = sum(self.log_probs)
self.kl = self.policy.calculate_kl(self.other_logits, self.logits)
self.avg_kl = (tf.reduce_sum(sum(self.kl)[:-1] * (1 - self.pads)) /
tf.reduce_sum(1 - self.pads))
# value network
with tf.variable_scope('value_net'):
(self.values,
self.regression_input,
self.regression_weight) = self.baseline.get_values(
self.observations, self.actions,
self.policy_internal_states, self.logits)
# target policy network
with tf.variable_scope('target_policy_net'):
(self.target_policy_internal_states,
self.target_logits, self.target_log_probs,
_, _) = \
self.policy.multi_step(self.observations,
self.internal_state,
self.actions)
# target value network
with tf.variable_scope('target_value_net'):
(self.target_values, _, _) = self.baseline.get_values(
self.observations, self.actions,
self.target_policy_internal_states, self.target_logits)
# construct copy op online --> target
all_vars = tf.trainable_variables()
online_vars = [p for p in all_vars if
'/policy_net' in p.name or '/value_net' in p.name]
target_vars = [p for p in all_vars if
'target_policy_net' in p.name or 'target_value_net' in p.name]
online_vars.sort(key=lambda p: p.name)
target_vars.sort(key=lambda p: p.name)
aa = self.target_network_lag
self.copy_op = tf.group(*[
target_p.assign(aa * target_p + (1 - aa) * online_p)
for online_p, target_p in zip(online_vars, target_vars)])
if train:
# evaluate objective
(self.loss, self.raw_loss, self.regression_target,
self.gradient_ops, self.summary) = self.objective.get(
self.rewards, self.pads,
self.values[:-1, :],
self.values[-1, :] * (1 - self.terminated),
self.log_probs, self.prev_log_probs, self.target_log_probs,
self.entropies, self.logits, self.target_values[:-1, :],
self.target_values[-1, :] * (1 - self.terminated))
self.regression_target = tf.reshape(self.regression_target, [-1])
self.policy_vars = [
v for v in tf.trainable_variables()
if '/policy_net' in v.name]
self.value_vars = [
v for v in tf.trainable_variables()
if '/value_net' in v.name]
# trust region optimizer
if self.trust_region_policy_opt is not None:
with tf.variable_scope('trust_region_policy', reuse=None):
avg_self_kl = (
tf.reduce_sum(sum(self.self_kls) * (1 - self.pads)) /
tf.reduce_sum(1 - self.pads))
self.trust_region_policy_opt.setup(
self.policy_vars, self.raw_loss, avg_self_kl,
self.avg_kl)
# value optimizer
if self.value_opt is not None:
with tf.variable_scope('trust_region_value', reuse=None):
self.value_opt.setup(
self.value_vars,
tf.reshape(self.values[:-1, :], [-1]),
self.regression_target,
tf.reshape(self.pads, [-1]),
self.regression_input, self.regression_weight)
# we re-use variables for the sampling operations
with tf.variable_scope('model', reuse=True):
scope = ('target_policy_net' if self.sample_from == 'target'
else 'policy_net')
with tf.variable_scope(scope):
self.next_internal_state, self.sampled_actions = \
self.policy.sample_step(self.single_observation,
self.internal_state,
self.single_action)
self.greedy_next_internal_state, self.greedy_sampled_actions = \
self.policy.sample_step(self.single_observation,
self.internal_state,
self.single_action,
greedy=True)
def sample_step(self, sess,
single_observation, internal_state, single_action,
greedy=False):
"""Sample batch of steps from policy."""
if greedy:
outputs = [self.greedy_next_internal_state, self.greedy_sampled_actions]
else:
outputs = [self.next_internal_state, self.sampled_actions]
feed_dict = {self.internal_state: internal_state}
for action_place, action in zip(self.single_action, single_action):
feed_dict[action_place] = action
for obs_place, obs in zip(self.single_observation, single_observation):
feed_dict[obs_place] = obs
return sess.run(outputs, feed_dict=feed_dict)
def train_step(self, sess,
observations, internal_state, actions,
rewards, terminated, pads,
avg_episode_reward=0, greedy_episode_reward=0):
"""Train network using standard gradient descent."""
outputs = [self.raw_loss, self.gradient_ops, self.summary]
feed_dict = {self.internal_state: internal_state,
self.rewards: rewards,
self.terminated: terminated,
self.pads: pads,
self.avg_episode_reward: avg_episode_reward,
self.greedy_episode_reward: greedy_episode_reward}
time_len = None
for action_place, action in zip(self.actions, actions):
if time_len is None:
time_len = len(action)
assert time_len == len(action)
feed_dict[action_place] = action
for obs_place, obs in zip(self.observations, observations):
assert time_len == len(obs)
feed_dict[obs_place] = obs
assert len(rewards) == time_len - 1
return sess.run(outputs, feed_dict=feed_dict)
def trust_region_step(self, sess,
observations, internal_state, actions,
rewards, terminated, pads,
avg_episode_reward=0,
greedy_episode_reward=0):
"""Train policy using trust region step."""
feed_dict = {self.internal_state: internal_state,
self.rewards: rewards,
self.terminated: terminated,
self.pads: pads,
self.avg_episode_reward: avg_episode_reward,
self.greedy_episode_reward: greedy_episode_reward}
for action_place, action in zip(self.actions, actions):
feed_dict[action_place] = action
for obs_place, obs in zip(self.observations, observations):
feed_dict[obs_place] = obs
(prev_log_probs, prev_logits) = sess.run(
[self.out_log_probs, self.logits], feed_dict=feed_dict)
feed_dict[self.prev_log_probs] = prev_log_probs
for other_logit, prev_logit in zip(self.other_logits, prev_logits):
feed_dict[other_logit] = prev_logit
# fit policy
self.trust_region_policy_opt.optimize(sess, feed_dict)
ret = sess.run([self.raw_loss, self.summary], feed_dict=feed_dict)
ret = [ret[0], None, ret[1]]
return ret
def fit_values(self, sess,
observations, internal_state, actions,
rewards, terminated, pads):
"""Train value network using value-specific optimizer."""
feed_dict = {self.internal_state: internal_state,
self.rewards: rewards,
self.terminated: terminated,
self.pads: pads}
for action_place, action in zip(self.actions, actions):
feed_dict[action_place] = action
for obs_place, obs in zip(self.observations, observations):
feed_dict[obs_place] = obs
# fit values
if self.value_opt is None:
raise ValueError('Specific value optimizer does not exist')
self.value_opt.optimize(sess, feed_dict)