forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcvt.py
67 lines (57 loc) · 2.44 KB
/
cvt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run training and evaluation for CVT text models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from base import configure
from base import utils
from training import trainer
from training import training_progress
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('mode', 'train', '"train" or "eval')
tf.app.flags.DEFINE_string('model_name', 'default_model',
'A name identifying the model being '
'trained/evaluated')
def main():
utils.heading('SETUP')
config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name)
config.write()
with tf.Graph().as_default() as graph:
model_trainer = trainer.Trainer(config)
summary_writer = tf.summary.FileWriter(config.summaries_dir)
checkpoints_saver = tf.train.Saver(max_to_keep=1)
best_model_saver = tf.train.Saver(max_to_keep=1)
init_op = tf.global_variables_initializer()
graph.finalize()
with tf.Session() as sess:
sess.run(init_op)
progress = training_progress.TrainingProgress(
config, sess, checkpoints_saver, best_model_saver,
config.mode == 'train')
utils.log()
if config.mode == 'train':
utils.heading('START TRAINING ({:})'.format(config.model_name))
model_trainer.train(sess, progress, summary_writer)
elif config.mode == 'eval':
utils.heading('RUN EVALUATION ({:})'.format(config.model_name))
progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
config.checkpoints_dir))
model_trainer.evaluate_all_tasks(sess, summary_writer, None)
else:
raise ValueError('Mode must be "train" or "eval"')
if __name__ == '__main__':
main()