forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_vocab.py
101 lines (77 loc) · 3.17 KB
/
gen_vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generates vocabulary and term frequency files for datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import iteritems
from collections import defaultdict
# Dependency imports
import tensorflow as tf
from data import data_utils
from data import document_generators
flags = tf.app.flags
FLAGS = flags.FLAGS
# Flags controlling input are in document_generators.py
flags.DEFINE_string('output_dir', '',
'Path to save vocab.txt and vocab_freq.txt.')
flags.DEFINE_boolean('use_unlabeled', True, 'Whether to use the '
'unlabeled sentiment dataset in the vocabulary.')
flags.DEFINE_boolean('include_validation', False, 'Whether to include the '
'validation set in the vocabulary.')
flags.DEFINE_integer('doc_count_threshold', 1, 'The minimum number of '
'documents a word or bigram should occur in to keep '
'it in the vocabulary.')
MAX_VOCAB_SIZE = 100 * 1000
def fill_vocab_from_doc(doc, vocab_freqs, doc_counts):
"""Fills vocabulary and doc counts with tokens from doc.
Args:
doc: Document to read tokens from.
vocab_freqs: dict<token, frequency count>
doc_counts: dict<token, document count>
Returns:
None
"""
doc_seen = set()
for token in document_generators.tokens(doc):
if doc.add_tokens or token in vocab_freqs:
vocab_freqs[token] += 1
if token not in doc_seen:
doc_counts[token] += 1
doc_seen.add(token)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
vocab_freqs = defaultdict(int)
doc_counts = defaultdict(int)
# Fill vocabulary frequencies map and document counts map
for doc in document_generators.documents(
dataset='train',
include_unlabeled=FLAGS.use_unlabeled,
include_validation=FLAGS.include_validation):
fill_vocab_from_doc(doc, vocab_freqs, doc_counts)
# Filter out low-occurring terms
vocab_freqs = dict((term, freq) for term, freq in iteritems(vocab_freqs)
if doc_counts[term] > FLAGS.doc_count_threshold)
# Sort by frequency
ordered_vocab_freqs = data_utils.sort_vocab_by_frequency(vocab_freqs)
# Limit vocab size
ordered_vocab_freqs = ordered_vocab_freqs[:MAX_VOCAB_SIZE]
# Add EOS token
ordered_vocab_freqs.append((data_utils.EOS_TOKEN, 1))
# Write
tf.gfile.MakeDirs(FLAGS.output_dir)
data_utils.write_vocab_and_frequency(ordered_vocab_freqs, FLAGS.output_dir)
if __name__ == '__main__':
tf.app.run()