-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy path44_two_clique_problem.cpp
122 lines (101 loc) · 3.4 KB
/
44_two_clique_problem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
link: https://www.geeksforgeeks.org/two-clique-problem-check-graph-can-divided-two-cliques/
video: https://youtu.be/cA8-mdRJuCI
why to complement and use bipartite? see [3:42] image in above video to understand
complement: means every node will now be connected to other clique
bipartite: now to make sure that it is possible to color
hence we can divide the graph in 2 clique
*/
// ----------------------------------------------------------------------------------------------------------------------- //
// Time complexity of above implementation is O(V^2)
// C++ program to find out whether a given graph can be
// converted to two Cliques or not.
#include <bits/stdc++.h>
using namespace std;
const int V = 5;
// This function returns true if subgraph reachable from
// src is Bipartite or not.
bool isBipartiteUtil(int G[][V], int src, int colorArr[])
{
colorArr[src] = 1;
// Create a queue (FIFO) of vertex numbers and enqueue
// source vertex for BFS traversal
queue <int> q;
q.push(src);
// Run while there are vertices in queue (Similar to BFS)
while (!q.empty())
{
// Dequeue a vertex from queue
int u = q.front();
q.pop();
// Find all non-colored adjacent vertices
for (int v = 0; v < V; ++v)
{
// An edge from u to v exists and destination
// v is not colored
if (G[u][v] && colorArr[v] == -1)
{
// Assign alternate color to this adjacent
// v of u
colorArr[v] = 1 - colorArr[u];
q.push(v);
}
// An edge from u to v exists and destination
// v is colored with same color as u
else if (G[u][v] && colorArr[v] == colorArr[u])
return false;
}
}
// If we reach here, then all adjacent vertices can
// be colored with alternate color
return true;
}
// Returns true if a Graph G[][] is Bipartite or not. Note
// that G may not be connected.
bool isBipartite(int G[][V])
{
// Create a color array to store colors assigned
// to all veritces. Vertex number is used as index in
// this array. The value '-1' of colorArr[i]
// is used to indicate that no color is assigned to
// vertex 'i'. The value 1 is used to indicate first
// color is assigned and value 0 indicates
// second color is assigned.
int colorArr[V];
for (int i = 0; i < V; ++i)
colorArr[i] = -1;
// One by one check all not yet colored vertices.
for (int i = 0; i < V; i++)
if (colorArr[i] == -1)
if (isBipartiteUtil(G, i, colorArr) == false)
return false;
return true;
}
// Returns true if G can be divided into
// two Cliques, else false.
bool canBeDividedinTwoCliques(int G[][V])
{
// Find complement of G[][]
// All values are complemented except
// diagonal ones
int GC[V][V];
for (int i = 0; i < V; i++)
for (int j = 0; j < V; j++)
GC[i][j] = (i != j) ? !G[i][j] : 0;
// Return true if complement is Bipartite
// else false.
return isBipartite(GC);
}
// Driver program to test above function
int main()
{
int G[][V] = { {0, 1, 1, 1, 0},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{0, 1, 0, 0, 1},
{0, 0, 0, 1, 0}
};
canBeDividedinTwoCliques(G) ? cout << "Yes" :
cout << "No";
return 0;
}