题目描述:
解决过程:
用的最小栈,吐了,居然忘记怎么写了,花了40分钟。而且审题出了问题,以为是最大矩形来着,没想到是最大正方形
代码:(最小栈→暴力→动态规划)
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> left (m, vector<int> (n));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == '1') {
left[i][j] = (j > 0) ? left[i][j-1] + 1 : 1;
}
}
}
vector<vector<int>> up (n,vector<int> (m,-1)), down (n,vector<int> (m,m));
for (int i = 0; i < n; i++) {
stack<int> stk;
for (int j = 0; j < m; j++) {
while (!stk.empty() && left[stk.top()][i] > left[j][i]) {
down[i][stk.top()] = j;
stk.pop();
}
up[i][j] = (stk.empty()) ? -1 : stk.top();
stk.push(j);
}
}
int ans = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == '1') {
int width = left[i][j];
int hight = down[j][i] - up[j][i] - 1;
if (width > hight) width -= width - hight;
else if (width < hight) hight -= hight - width;
ans = max(ans, width * hight);
}
}
}
return ans;
}
};
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
if (matrix.size() == 0 || matrix[0].size() == 0) {
return 0;
}
int maxSide = 0;
int rows = matrix.size(), columns = matrix[0].size();
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
if (matrix[i][j] == '1') {
// 遇到一个 1 作为正方形的左上角
maxSide = max(maxSide, 1);
// 计算可能的最大正方形边长
int currentMaxSide = min(rows - i, columns - j);
for (int k = 1; k < currentMaxSide; k++) {
// 判断新增的一行一列是否均为 1
bool flag = true;
if (matrix[i + k][j + k] == '0') {
break;
}
for (int m = 0; m < k; m++) {
if (matrix[i + k][j + m] == '0' || matrix[i + m][j + k] == '0') {
flag = false;
break;
}
}
if (flag) {
maxSide = max(maxSide, k + 1);
} else {
break;
}
}
}
}
}
int maxSquare = maxSide * maxSide;
return maxSquare;
}
};
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
if (matrix.size() == 0 || matrix[0].size() == 0) {
return 0;
}
int maxSide = 0;
int rows = matrix.size(), columns = matrix[0].size();
vector<vector<int>> dp(rows, vector<int>(columns));
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
if (matrix[i][j] == '1') {
if (i == 0 || j == 0) {
dp[i][j] = 1;
} else {
dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
maxSide = max(maxSide, dp[i][j]);
}
}
}
int maxSquare = maxSide * maxSide;
return maxSquare;
}
};