-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
287 lines (259 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import sys
import time
import random
import pprint
from itertools import product
from functools import partial
from sklearn import linear_model
import numpy
import ml.features as features
import ml.clfs as clfs
from ml.load_data import load_mol_data, load_qm7_data, load_dave_data, load_gdb13_data, load_quambo_data, load_qm7b_data
from ml.init_data import init_data, init_data_multi, init_data_length
from ml.utils import erf_over_r, one_over_sqrt, lennard_jones, cosine_distance
from ml.utils import print_property_statistics, print_best_methods ,print_load_stats
from ml.cross_validate import cross_clf_kfold
def main(features, properties, groups, clfs, cross_validate,
test_folds=5, cross_folds=5):
results = {}
for prop_name, units, prop in properties:
print prop_name
results[prop_name] = {}
for feat_name, feat in features.items():
results[prop_name][feat_name] = {}
print "\t" + feat_name
for clf_name, clf, clf_kwargs in clfs:
start = time.time()
opt_params, (test_mean, test_std) = cross_validate(
feat,
prop,
groups,
clf,
clf_kwargs,
test_folds=test_folds,
cross_folds=cross_folds,
)
time_taken = time.time() - start
string = "\t\t%s: %.4f +/- %.4f %s (%.4f secs)" % (
clf_name,
test_mean,
test_std,
units,
time_taken,
)
print string, opt_params
results[prop_name][feat_name][clf_name] = (test_mean, test_std, opt_params)
print
sys.stdout.flush()
print
return results
def main2(X, y, clf):
for frac in numpy.logspace(-2.5, -0.7, 10):
m = X.shape[0]
m_sub = int(m * frac)
train_folds = []
test_folds = []
for loop in xrange(5):
train_idx = random.sample(range(m), m_sub)
train_set = set(train_idx)
test_idx = [i for i in xrange(m) if i not in train_set]
random.shuffle(test_idx)
X_train = X[train_idx, :]
X_test = X[test_idx, :]
y_train = y[train_idx]
y_test = y[test_idx]
clf.fit(X_train, y_train)
pred_train = clf.predict(X_train)
pred_test = clf.predict(X_test)
train_errors = numpy.abs(pred_train - y_train)
test_errors = numpy.abs(pred_test - y_test)
train_folds.append(train_errors.mean())
test_folds.append(test_errors.mean())
print loop, "pre", train_folds[-1], test_folds[-1]
sys.stdout.flush()
print m_sub, numpy.mean(train_folds), numpy.std(train_folds), numpy.mean(test_folds), numpy.std(test_folds)
sys.stdout.flush()
if __name__ == '__main__':
distance_functions = [cosine_distance, lennard_jones, erf_over_r, one_over_sqrt]
powers = [-2, -1, -0.5, 0.5, 1, 2]
slopes = [5., 10., 20., 30., 50.]
segments = [10, 25, 50, 100]
max_depths = [1, 2, 3, 4, 5, 6, 7, 0]
sigmoids = ["norm_cdf", "expit", "zero_one"]
# sigmoids = ["norm_cdf"]
# slopes = [30.]
sigmoids = ["expit"]
slopes = [20.]
segments = [100]
max_depths = [3]
atom_features = [
# ((features.get_atom_feature, {}), ),
# ((features.get_atom_env_feature, {}), ),
# ((features.get_atom_thermo_feature, {}), ),
]
bond_features = [
# ((features.get_bond_feature, {}), ),
# ((features.get_sum_bond_feature, {}), ),
# ((features.get_fractional_bond_feature, {"slope": slopes}), ),
# ((features.get_encoded_bond_feature, {"slope": slopes, "segments": segments, "max_depth": max_depths, "sigmoid": sigmoids}), ),
# ((features.get_bag_of_bonds_feature, {}), ),
# ((features.get_bag_of_bonds_feature, {"max_depth": [2, None]}), ),
# ((features.get_bag_of_bonds_feature, {"eq_bond": [True]}), ),
]
angle_features = [
# ((features.get_angle_feature, {}), ),
# ((features.get_angle_bond_feature, {}), ),
# ((features.get_encoded_angle_feature, {"slope": slopes, "segments": segments}), ),
]
dihedral_features = [
# ((features.get_dihedral_feature, {}), ),
# ((features.get_dihedral_bond_feature, {}), ),
]
trihedral_features = [
# ((features.get_trihedral_feature, {}), ),
]
other_features = [
# ((features.get_null_feature, {}), ),
# (
# (features.get_atom_feature, {}),
# (features.get_encoded_bond_feature, {"slope": slopes, "segments": segments, "max_depth": max_depths, "sigmoid": sigmoids}),
# (features.get_angle_bond_feature, {}),
# (features.get_dihedral_bond_feature, {}),
# ),
# (
# (features.get_atom_feature, {}),
# (features.get_encoded_bond_feature, {"slope": slopes, "segments": segments, "max_depth": max_depths, "sigmoid": sigmoids}),
# (features.get_angle_feature, {}),
# (features.get_dihedral_feature, {}),
# ),
# ((features.get_local_atom_zmatrix_feature, {}), ),
# ((features.get_connective_feature, {}), ),
# ((features.get_local_zmatrix, {}), ),
# ((features.get_full_local_zmatrix, {}), ),
# ((features.get_bin_coulomb_feature, {}), ),
# ((features.get_bin_eigen_coulomb_feature, {}), ),
# ((features.get_flip_binary_feature, {}), ),
# ((features.get_coulomb_feature, {"max_depth": max_depths}), ),
# ((features.get_coulomb_feature, {"eq_bond": [True]}), ),
# ((features.get_sum_coulomb_feature, {}), ),
# ((features.get_eigen_coulomb_feature, {}), ),
# ((features.get_sorted_coulomb_feature, {}), ),
# ((features.get_sorted_coulomb_vector_feature, {}), ),
# ((features.get_distance_feature, {"power": powers}), ),
# ((features.get_eigen_distance_feature, {"power": powers}), ),
# ((features.get_custom_distance_feature, {"f": distance_functions}), ),
# ((features.get_eigen_custom_distance_feature, {"f": distance_functions}), ),
# ((features.get_fingerprint_feature, {"size": [128, 1024, 2048]}), ),
]
extended_features = []
for group in product(
atom_features,
[None] + bond_features,
[None] + angle_features,
[None] + dihedral_features,
[None] + trihedral_features):
try:
idx = group.index(None)
new_group = [x[0] for x in group[:idx]]
if all(x is None for x in group[idx:]):
extended_features.append(new_group)
except ValueError:
# If there is no None, then use the whole thing
extended_features.append([x[0] for x in group])
feature_sets = atom_features \
+ bond_features \
+ angle_features \
+ dihedral_features \
+ trihedral_features \
+ other_features \
+ extended_features
FEATURE_FUNCTIONS = []
for feature_group in feature_sets:
multi_feature_sets = []
for function, kwargs_sets in feature_group:
single_feature_set = []
for x in product(*kwargs_sets.values()):
temp = (function, dict(zip(kwargs_sets.keys(), x)))
single_feature_set.append(temp)
multi_feature_sets.append(single_feature_set)
FEATURE_FUNCTIONS.extend(product(*multi_feature_sets))
CLFS = (
(
"LinearRidge",
linear_model.Ridge,
{
"alpha": [10. ** x for x in xrange(-3, 1)]
}
),
(
"KernelRidge",
clfs.KRR,
{
"alpha": [10. ** x for x in xrange(-11, -3, 2)],
"kernel": ["rbf", "laplace"],
"gamma": [10. ** x for x in xrange(-11, -3, 2)],
}
),
# (
# "SVM",
# clfs.SVM,
# {
# 'C': [10. ** x for x in xrange(-1, 4)],
# "gamma": [10. ** x for x in xrange(-4, 0)],
# }
# ),
)
calc_set = ("b3lyp", "cam", "m06hf")
opt_set = tuple("opt/" + x for x in calc_set)
struct_set = ('O', 'N', '4', '8')
prop_set = ("homo", "lumo", "gap")
options = {
"dave": load_dave_data,
"qm7": load_qm7_data,
"qm7b": load_qm7b_data,
"gdb13": load_gdb13_data,
"mol": partial(load_mol_data, calc_set, opt_set, struct_set, prop_set),
"quambo": load_quambo_data,
}
try:
func = options[sys.argv[1]]
except KeyError:
print "Not a valid dataset. Must be one of %s" % options.keys()
exit(0)
except IndexError:
print "Needs a dataset argument"
exit(0)
names, datasets, geom_paths, properties, meta, lengths = func()
print_load_stats(names, geom_paths)
sys.stdout.flush()
feats, properties, groups = init_data(
FEATURE_FUNCTIONS,
names,
datasets,
geom_paths,
meta,
lengths,
properties,
)
# dummy_results = print_property_statistics(properties, groups, cross_clf_kfold)
# sys.stdout.flush()
# results = main(feats, properties, groups, CLFS, cross_clf_kfold)
# print_best_methods(results)
names = [
# "atom {} | encoded_bond {'slope': 20.0, 'segments': 100, 'max_depth': 3, 'sigmoid': 'expit'} | angle_bond {} | dihedral_bond {}",
# "bag_of_bonds {'max_depth': 0}",
# "encoded_bond {'slope': 20.0, 'segments': 100, 'max_depth': 3, 'sigmoid': 'expit'}",
# "bond {}",
]
clfs = [
# clfs.KRR(alpha=1e-9, gamma=1e-7, kernel='rbf'),
# clfs.KRR(alpha=1e-9, gamma=1e-5, kernel='laplace'),
# clfs.KRR(alpha=1e-9, gamma=1e-7, kernel='rbf'),
# clfs.KRR(alpha=1e-7, gamma=0.001, kernel='rbf'),
]
X = feats[names[0]]
y = properties[0][2]
clf = clfs[0]
print names[0]
sys.stdout.flush()
main2(X, y, clf)