-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNN_model_library.py
executable file
·61 lines (49 loc) · 3.24 KB
/
NN_model_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tensorflow as tf
import CNN_TF_wrapper as wrap
import numpy as np
n_features_conv1 = 8
n_features_conv2 = 4
n_features_conv3 = 2
def make_NN_model_single(x_post, imageSize, conv_size):
X = tf.reshape(x_post, [-1, imageSize[0], imageSize[1], 1]) #postGad
#Convolution layers
filter_size = tuple([conv_size]*2)
conv1 = wrap.Convolution2d(X, (imageSize[0], imageSize[1]), 1, n_features_conv1, filter_size, activation = 'relu', name_conv = 'Conv_Layer_1')
conv1_out = conv1.output()
conv1_transpose = wrap.Conv2DTranspose(conv1_out, (imageSize[0], imageSize[1]), n_features_conv1, 1, filter_size , activation = 'relu', name_conv = 'Deconv_Layer_1')
decoded = conv1_transpose.output()
return decoded
def make_NN_model_double(x_post, imageSize, conv_size):
X = tf.reshape(x_post, [-1, imageSize[0], imageSize[1], 1]) #postGad
#Convolution layers
filter_size = tuple([conv_size]*2)
conv1 = wrap.Convolution2d(X, imageSize.tolist(), 1, n_features_conv1, filter_size, activation = 'relu', name_conv = 'Conv_Layer_1')
conv1_out = conv1.output()
conv2 = wrap.Convolution2d(conv1_out, imageSize.tolist(), n_features_conv1, n_features_conv2, filter_size, activation = 'relu', name_conv ='Conv_Layer_2')
conv2_out = conv2.output()
conv2_transpose = wrap.Conv2DTranspose(conv2_out, imageSize.tolist(), n_features_conv2, n_features_conv1, filter_size , activation = 'relu', name_conv = 'Deconv_Layer_2')
conv2t_out = conv2_transpose.output()
conv1_transpose = wrap.Conv2DTranspose(conv2t_out, imageSize.tolist(), n_features_conv1, 1, filter_size , activation = 'relu', name_conv = 'Deconv_Layer_1')
decoded = conv1_transpose.output()
return decoded
def make_NN_model_3(x_post, imageSize, conv_sizes):
X = tf.reshape(x_post, [-1, imageSize[0], imageSize[1], 1])
filter_size = tuple([conv_sizes[0]]*2)
conv1 = wrap.Convolution2d(X, imageSize.tolist(), 1, n_features_conv1, filter_size, activation = 'relu', name_conv = 'Conv_Layer_1')
conv1_out = conv1.output()
filter_size = tuple([conv_sizes[1]]*2)
conv2 = wrap.Convolution2d(conv1_out, imageSize.tolist(), n_features_conv1, n_features_conv2, filter_size, activation = 'relu', name_conv = 'Conv_Layer_2')
conv2_out = conv2.output()
filter_size = tuple([conv_sizes[2]]*2)
conv3 = wrap.Convolution2d(conv2_out, imageSize.tolist(), n_features_conv2, n_features_conv3, filter_size, activation = 'relu', name_conv = 'Conv_Layer_3')
conv3_out = conv3.output()
filter_size = tuple([conv_sizes[2]]*2)
conv3_transpose = wrap.Conv2DTranspose(conv3_out, imageSize.tolist(), n_features_conv3, n_features_conv2, filter_size , activation = 'relu', name_conv = 'Deconv_Layer_3')
conv3t_out = conv3_transpose.output()
filter_size = tuple([conv_sizes[1]]*2)
conv2_transpose = wrap.Conv2DTranspose(conv3t_out, imageSize.tolist(), n_features_conv2, n_features_conv1, filter_size , activation = 'relu', name_conv = 'Deconv_Layer_2')
conv2t_out = conv2_transpose.output()
filter_size = tuple([conv_sizes[0]]*2)
conv1_transpose = wrap.Conv2DTranspose(conv2t_out, imageSize.tolist(), n_features_conv1, 1, filter_size , activation = 'relu', name_conv = 'Deconv_Layer_1')
decoded = conv1_transpose.output()
return decoded