-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_train.py
109 lines (92 loc) · 3.81 KB
/
text_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from lib.text_data import MSMarcoDataset
from torch.utils.data import DataLoader
from sentence_transformers import losses, models, SentenceTransformer
from torch import nn, Tensor
from typing import Dict, Any, Iterable
from lib.losses import DCL, DHEL, NT_xent, InfoNCELoss, InfoNCELoss_angle
import torch
import argparse
import os
class RankingLoss(nn.Module):
def __init__(self, model: SentenceTransformer, loss_func_cls) -> None:
super().__init__()
self.model = model
self.loss_fct = loss_func_cls(temperature=0.05)
def forward(
self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor
) -> Tensor:
reps = [
self.model(sentence_feature)["sentence_embedding"]
for sentence_feature in sentence_features
]
embeddings_a = reps[0]
embeddings_b = torch.cat(reps[1:])
return self.loss_fct(embeddings_a, embeddings_b)
def get_config_dict(self) -> Dict[str, Any]:
return {}
def get_name(self) -> str:
return self.loss_fct.__class__.__name__
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", type=str, default="nreimers/MiniLM-L6-H384-uncased"
)
parser.add_argument("--loss", type=str, default="MNRL")
parser.add_argument("--num_epochs", type=int, default=10)
parser.add_argument("--warmup_epoch", type=float, default=0.05)
parser.add_argument("--batch_size", type=int, default=96)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--lr", type=float, default=1e-4)
args = parser.parse_args()
model_name = args.model_name
# Now we create a SentenceTransformer model from scratch
word_emb = torch.compile(models.Transformer(model_name))
pooling = torch.compile(models.Pooling(word_emb.get_word_embedding_dimension()))
model = SentenceTransformer(modules=[word_emb, pooling]) # type: ignore
# For training the SentenceTransformer model, we need a dataset, a dataloader, and a loss used for training.
train_dataset = MSMarcoDataset()
train_dataloader = DataLoader(
train_dataset,
num_workers=args.num_workers,
shuffle=True,
batch_size=args.batch_size,
pin_memory=True,
drop_last=True,
)
train_loss_mnrl = losses.MultipleNegativesRankingLoss(model=model)
train_loss_dcl = RankingLoss(model=model, loss_func_cls=DCL)
train_loss_dhel = RankingLoss(model=model, loss_func_cls=DHEL)
train_loss_ntxent = RankingLoss(model=model, loss_func_cls=NT_xent)
train_loss_info_nce = RankingLoss(model=model, loss_func_cls=InfoNCELoss)
train_loss_info_nce_angle = RankingLoss(
model=model, loss_func_cls=InfoNCELoss_angle
)
if args.loss == "MNRL":
train_loss = train_loss_mnrl
elif args.loss == "DCL":
train_loss = train_loss_dcl
elif args.loss == "DHEL":
train_loss = train_loss_dhel
elif args.loss == "NT_XENT":
train_loss = train_loss_ntxent
elif args.loss == "INFO_NCE":
train_loss = train_loss_info_nce
elif args.loss == "INFO_NCE_ANGLE":
train_loss = train_loss_info_nce_angle
else:
raise ValueError("Invalid loss function")
# print(f"Train {model_name} with {train_loss.get_name()} loss")
warmup_steps = int(len(train_dataloader) * args.num_epochs * args.warmup_epoch)
# Train the model
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=args.num_epochs,
warmup_steps=warmup_steps,
use_amp=True,
optimizer_params={"lr": args.lr},
)
dev_dataset = MSMarcoDataset(data_type="dev")
evaluator = dev_dataset.get_evaluator(args.loss)
# Save the model
os.makedirs("text_results", exist_ok=True)
evaluator(model, output_path=f"text_results")