-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
461 lines (349 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import sys
import time
import os
import numpy as np
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
from data import BatchData, AverageMeter
from torchvision import transforms
from replay import *
from mobilenet import *
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
avg_acc = 0
test_name = "EfficientNetReplay"
def clip_gradient(optimizer, grad_clip):
"""
Clips gradients computed during backpropagation to avoid explosion of gradients.
:param optimizer: optimizer with the gradients to be clipped
:param grad_clip: clip value
"""
for group in optimizer.param_groups:
for param in group['params']:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
def save_ckpt(loss, lr_log, top1, batch, net, epoch, total):
torch.save(net.state_dict(), 'batch_q{}'.format(batch,epoch))
f = open("losses.txt", "a")
f.write('Batch{}, Epoch{}, LR:{}, Loss :{}, top1:{}'.format(batch, epoch, lr_log, loss.avg, top1.avg))
f.write("\n")
f.close()
def train(train_loader, val_loader, train_task, model, criterion, optimizer, epoch, par, replay, flag, args):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
val=[1]
if val_loader:
val = [data for data in replay]
print(len(val))
for param_group in optimizer.param_groups:
lr_log = param_group['lr']
f = 0
total_norm = 0
end = time.time()
i = -1
if flag:
for data in train_loader[0]:
i+=1
# measure data loading time
input_var, target_var = data
input_var, target_var = input_var.to(device), target_var.to(device)
data_time.update(time.time() - end)
for p in par:
total_norm += torch.sum(torch.abs(p))
total_norm = total_norm ** (1. / 2)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1= accuracy(output.data, target_var)
losses.update(loss.item())
top1.update(prec1[0])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print("Memory", torch.cuda.memory_allocated()/1e9, torch.cuda.max_memory_allocated()/1e9)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.disp_iter == 0:
print('Batch: {batch} '
'Epoch: [{0}][{1}/{2}] '
'LR: {lr}'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.7f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Grad:{norm}'.format(
epoch, i, len(train_loader[0]), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, batch=train_task, norm=total_norm, lr=lr_log))
if val_loader and len(val):
input_var, target_var = val[f]
input_var, target_var = input_var.to(device), target_var.to(device)
output = model(input_var)
#output = metric_fc(feature, target_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1= accuracy(output.data, target_var)
losses.update(loss.item())
top1.update(prec1[0])
#compute gradient and do SGD step
f=(f +1)%(len(val))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % args.disp_iter == 0:
print('Batch_Replay: {batch} '
'Epoch: [{0}][{1}/{2}] '
'LR: {lr}'
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.7f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Grad:{norm}'.format(
epoch, i, len(train_loader[0]),
data_time=data_time, loss=losses, top1=top1, batch=train_task, norm=total_norm, lr=lr_log))
if len(val) > len(train_loader[0]):
for j in range(f, len(val)):
input_var, target_var = val[j]
input_var, target_var = input_var.to(device), target_var.to(device)
for p in par:
total_norm += torch.sum(torch.abs(p))
total_norm = total_norm ** (1. / 2)
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1= accuracy(output.data, target_var)
losses.update(loss.item())
top1.update(prec1[0])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if j % args.disp_iter == 0:
print('Batch: {batch} '
'Epoch: [{0}][{1}/{2}] '
'LR: {lr}'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss {loss.val:.7f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Grad:{norm}'.format(
epoch, i, len(val_loader[0]), batch_time=batch_time,
loss=losses, top1=top1, batch=train_task, norm=total_norm, lr=lr_log))
adjust_learning_rate(optimizer, epoch)
if epoch%1 == 0:
save_ckpt(losses, lr_log, top1, train_task, model, epoch, args.num_epoch)
return losses
def val_acc(val_loader, model):
acc_list = []
top1 = AverageMeter()
for data in val_loader[0]:
input_var, target_var = data
input_var, target_var = input_var.to(device), target_var.to(device)
output = model(input_var)
prec1 = accuracy(output.data, target_var)
top1.update(prec1[0])
return top1.avg
def validate(val_loader, model, criterion, batch,task, viw, replay):
global avg_acc
losses = AverageMeter()
top1 = AverageMeter()
i = 0
acc_list = []
for data, d1 in zip(val_loader[0], viw):
i+=1
input_var, target_var = data
input_var, target_var = input_var.to(device), target_var.to(device)
output = model(input_var)
loss = criterion(output, target_var)
prec1 = accuracy(output.data, target_var)
acc_list.append(prec1[0].cpu())
losses.update(loss.item())
top1.update(prec1[0])
print("Replay:", len(replay.replaybuffer), "Task:", task)
if batch == task:
replay.update_best(list(np.array(acc_list)), task)
if batch < task:
print(len(val_loader[1]))
replay.update_replay(acc_list, val_loader[1], val_loader[2], batch, task)
print('Batch:{} '
'Acc:{} '
'Loss:{} '.format(batch, top1.avg, losses.avg))
f = open("val.txt", "a")
f.write('Trained Batch: {}'.format(task))
f.write("\n")
f.write('Batch{}, Loss :{}, top1:{}'.format(batch,losses.avg, top1.avg))
f.write("\n")
f.close()
avg_acc = (avg_acc*(batch) + top1.avg)/(batch+1)
print(avg_acc)
return replay
def group_weight(module):
group_decay = []
group_no_decay = []
for m in module.modules():
if isinstance(m, nn.Linear):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.conv._ConvNd):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.batchnorm._BatchNorm):
if m.weight is not None:
group_no_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
assert len(list(module.parameters())) == len(group_decay) + len(group_no_decay)
param_m = group_decay + group_no_decay
groups = [dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0)]
# print(groups)
return groups, param_m
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.98 ** (epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def create_optimizer(net, args):
grouped, par = group_weight(net)
optimizer = torch.optim.RMSprop(grouped, lr=args.lr,weight_decay=args.weight_decay)
return optimizer, par
def create_optimizer1(net, args):
grouped, par = group_weight(net)
optimizer = torch.optim.SGD(grouped, lr=args.lr, weight_decay=args.weight_decay, momentum=args.beta1, nesterov=True)
return optimizer, par
def main(args):
#model = EfficientNet.from_name("efficientnet-b3").to(device)
model = MobileNetV2().to(device)
f = open("losses.txt", "a")
f.write(test_name)
f.write("\n")
f.close()
f = open("val.txt", "a")
f.write(test_name)
f.write("\n")
f.close()
optimizer, par = create_optimizer1(model, args)
if args.load:
model.load_state_dict(torch.load("batch0"))
if args.focal_loss:
loss = FocalLoss(gamma=args.gamma).to(device)
else:
loss = nn.CrossEntropyLoss().to(device)
trans = transforms.Compose([
transforms.Resize((224,224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
transview = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
train_batch_list = [BatchData(args.train_dataset_path, 'train', i, trans) for i in range(1, 13)]
train_loader_list = [(torch.utils.data.DataLoader(batch, batch_size=args.batch_size, shuffle=True, num_workers=2), batch.data_list, batch.label_list)
for batch in train_batch_list]
val_batch_list = [BatchData(args.val_dataset_path, 'validation', i, trans) for i in range(1, 13)]
val_loader_list = [(torch.utils.data.DataLoader(batch, batch_size=args.batch_size, shuffle=False, num_workers=2), batch.data_list, batch.label_list)
for batch in val_batch_list]
view_batch_list = [BatchData(args.val_dataset_path, 'validation', i, transview) for i in range(1, 13)]
view_loader_list = [torch.utils.data.DataLoader(batch, batch_size=args.batch_size, shuffle=True, num_workers=2)
for batch in view_batch_list]
replay1 = ReplayMemory(12, len(val_loader_list[0]), 40)
replay = torch.utils.data.DataLoader(ReplayData(replay1.replaybuffer, replay1.label, trans), batch_size=args.batch_size, shuffle=False, num_workers=0)
for train_task in range(12):
model.train()
if train_task != -1:
best_acc = AverageMeter()
los = AverageMeter()
if train_task == 11:
args.num_epoch = 30
for epoch in range(1,args.num_epoch+1):
if train_task == 11 and epoch == 21:
args.lr = 0.003
if train_task ==0:
los = train(train_loader_list[train_task], train_task>0, train_task, model, loss, optimizer, epoch, par, 0, 1, args)
else:
if epoch == 2:
replay1 = validate(val_loader_list[train_task-1], model, loss, train_task-1, train_task, view_loader_list[train_task-1], replay1)
replay = torch.utils.data.DataLoader(ReplayData(replay1.replaybuffer, replay1.label, trans), batch_size=2*args.batch_size, shuffle=False, num_workers=0)
print("Replay:", len(replay1.replaybuffer))
los = train(train_loader_list[train_task], val_loader_list[train_task], train_task, model, loss, optimizer, epoch, par, replay, 1,args)
acc = val_acc(val_loader_list[train_task], model)
if acc > best_acc.avg:
best_acc.update(acc)
elif best_acc.avg - acc >= 1:
print(">>>>>>Early Stopping:", acc, best_acc.avg)
lr_log = 0
for param_group in optimizer.param_groups:
lr_log = param_group['lr']
# save_ckpt(los, lr_log, best_acc, train_task, model, epoch, args.num_epoch)
break
replay1.reset()
for i in range(train_task + 1):
model.eval()
with torch.no_grad():
replay1 = validate(val_loader_list[i], model, loss, i, train_task, view_loader_list[i], replay1)
if train_task:
replay = torch.utils.data.DataLoader(ReplayData(replay1.replaybuffer, replay1.label, trans), batch_size=2*args.batch_size, shuffle=True, num_workers=0)
else:
replay = torch.utils.data.DataLoader(ReplayData(replay1.replaybuffer, replay1.label, trans), batch_size=2*args.batch_size, shuffle=False, num_workers=0)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train_dataset_path',
default='./data')
parser.add_argument('--val_dataset_path',
default='./data')
parser.add_argument('--load',
default=0)
parser.add_argument('--batch_size',
default=16)
parser.add_argument('--gpus', default='0,1,2',
help='gpus to use, e.g. 0-3 or 0,1,2,3')
parser.add_argument('--batch_size_per_gpu', default=1, type=int,
help='input batch size')
parser.add_argument('--num_epoch', default=20, type=int,
help='epochs to train for')
parser.add_argument('--start_epoch', default=1, type=int,
help='epoch to start training. useful if continue from a checkpoint')
parser.add_argument('--epoch_iters', default=3000, type=int,
help='iterations of each epoch (irrelevant to batch size)')
parser.add_argument('--optim', default='SGD', help='optimizer')
parser.add_argument('--lr', default=0.01, type=float, help='LR')#used 0.01
parser.add_argument('--lr_pow', default=0.9, type=float,
help='power in poly to drop LR')
parser.add_argument('--beta1', default=0.9, type=float,
help='momentum for sgd, beta1 for adam')
parser.add_argument('--weight_decay', default=0.0002, type=float,
help='weights regularizer')#Changes!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
parser.add_argument('--disp_iter', type=int, default=10,
help='frequency to display')
parser.add_argument('--margin-m', type=float, default=0.5, help='angular margin m')
parser.add_argument('--margin-s', type=float, default=64.0, help='feature scale s')
parser.add_argument('--easy-margin', type=bool, default=False, help='easy margin')
parser.add_argument('--focal-loss', type=bool, default=False, help='focal loss')
parser.add_argument('--gamma', type=float, default=2.0, help='focusing parameter gamma')
args = parser.parse_args()
print("Input arguments:")
for key, val in vars(args).items():
print("{:16} {}".format(key, val))
main(args)