diff --git a/verticapy/machine_learning/memmodel/linear_model.py b/verticapy/machine_learning/memmodel/linear_model.py
index 7047a10ba..afd70a2d2 100755
--- a/verticapy/machine_learning/memmodel/linear_model.py
+++ b/verticapy/machine_learning/memmodel/linear_model.py
@@ -25,15 +25,80 @@
class LinearModel(InMemoryModel):
"""
- InMemoryModel implementation of linear
+ :py:mod:`verticapy.machine_learning.memmodel.base.InMemoryModel` implementation of linear
algorithms.
+
Parameters
----------
coef: ArrayLike
ArrayLike of the model's coefficients.
intercept: float, optional
The intercept or constant value.
+
+ .. note:: :py:mod:`verticapy.machine_learning.memmodel` are defined entirely by their attributes. For example, 'coefficients' and 'intercept' define a linear regression model.
+
+ Examples
+ --------
+
+ **Initalization**
+
+ Import the required module.
+
+ .. ipython:: python
+ :suppress:
+
+ from verticapy.machine_learning.memmodel.linear_model import LinearModel
+
+ A linear model is defined by its coefficients and an intercept value. In this example, we will use the following:
+
+ .. ipython:: python
+ :suppress:
+
+ coefficients = [0.5, 1.2]
+ intercept = 2.0
+
+ Let's create a :py:mod:`verticapy.machine_learning.memmodel.linear_model`.
+
+ .. ipython:: python
+ :suppress:
+
+ model_lm = LinearModel(coefficients, intercept)
+
+ Create a dataset.
+
+ .. ipython:: python
+ :suppress:
+
+ data = [[1.0, 0.3], [2.0, -0.6]]
+
+ **Making In-Memory Predictions**
+
+ Use :py:mod:`verticapy.machine_learning.memmodel.linear_model.LinearModel.predict` method to do predictions
+
+ .. ipython:: python
+ :suppress:
+
+ model_lm.predict(data)
+
+ **Deploy SQL Code**
+
+ Let's use the following column names:
+
+ .. ipython:: python
+ :suppress:
+
+ cnames = ['col1', 'col2']
+
+ Use :py:mod:`verticapy.machine_learning.memmodel.linear_model.LinearModel.predict_sql` method to get the SQL code needed to deploy the model using its attributes
+
+ .. ipython:: python
+ :suppress:
+
+ model_lm.predict_sql(cnames)
+
+ .. hint:: This object can be pickled and used in any in-memory environment, just like `SKLEARN `_ models.
+
"""
# Properties.
@@ -160,7 +225,7 @@ def predict_proba_sql(self, X: ArrayLike) -> list[str]:
class LinearModelClassifier(LinearModel):
"""
- InMemoryModel Implementation of linear algorithms for
+ :py:mod:`verticapy.machine_learning.memmodel.base.InMemoryModel` Implementation of linear algorithms for
classification.
Parameters
@@ -169,6 +234,82 @@ class LinearModelClassifier(LinearModel):
ArrayLike of the model's coefficients.
intercept: float, optional
The intercept or constant value.
+
+ Examples
+ --------
+
+ **Initalization**
+
+ Import the required module.
+
+ .. ipython:: python
+ :suppress:
+
+ from verticapy.machine_learning.memmodel.linear_model import LinearModelClassifier
+
+ A linear classifier model is defined by its coefficients and an intercept value. In this example, we will use the following:
+
+ .. ipython:: python
+ :suppress:
+
+ coefficients = [0.5, 1.2]
+ intercept = 2.0
+
+ Let's create a :py:mod:`verticapy.machine_learning.memmodel.linear_model`.
+
+ .. ipython:: python
+ :suppress:
+
+ model_lmc = LinearModelClassifier(coefficients, intercept)
+
+ Create a dataset.
+
+ .. ipython:: python
+ :suppress:
+
+ data = [[1.0, 0.3], [-0.5, -0.8]]
+
+ **Making In-Memory Predictions**
+
+ Use :py:meth:`verticapy.machine_learning.memmodel.linear_model.LinearModelClassifier.predict` method to do predictions
+
+ .. ipython:: python
+ :suppress:
+
+ model_lmc.predict(data)
+
+ Use :py:meth:`verticapy.machine_learning.memmodel.linear_model.LinearModel.predict_proba` method to calculate the predicted probabilities for each class
+
+ .. ipython:: python
+ :suppress:
+
+ model_lmc.predict_proba(data)
+
+ **Deploy SQL Code**
+
+ Let's use the following column names:
+
+ .. ipython:: python
+ :suppress:
+
+ cnames = ['col1', 'col2']
+
+ Use :py:meth:`verticapy.machine_learning.memmodel.linear_model.LinearModelClassifier.predict_sql` method to get the SQL code needed to deploy the model using its attributes
+
+ .. ipython:: python
+ :suppress:
+
+ model_lmc.predict_sql(cnames)
+
+ Use :py:meth:`verticapy.machine_learning.memmodel.linear_model.LinearModel.predict_proba_sql` method to get the SQL code needed to deploy the model that computes predicted probabilities
+
+ .. ipython:: python
+ :suppress:
+
+ model_lmc.predict_proba_sql(cnames)
+
+ .. hint:: This object can be pickled and used in any in-memory environment, just like `SKLEARN `_ models.
+
"""
# Properties.