-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
98 lines (79 loc) · 2.65 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import csv
from io import StringIO
def read_data_to_list(csv_file):
converted = StringIO()
with open(csv_file) as file:
converted.write(file.read().replace('[', '"[').replace(']', ']"'))
read_data=[]
converted.seek(0)
reader = csv.reader(converted)
for row in reader:
read_data.append(row)
read_data = list(map(list, zip(*read_data )))
for episode, col in enumerate(read_data):
for i, value in enumerate(col):
col[i] = value.replace('[','').replace(']','')
col[i] = col[i].split()
col[i] = np.array(col[i]).astype(float)
read_data[episode]= col
return(np.array(read_data))
#states = read_data_to_list("states_all.csv")
def plot(data, dim,name):
for episode in range(0,data.shape[0]):
plt.figure()
plt.plot(data[episode, :, dim])
plt.title("Dimension: {}".format(dim))
plt.xlabel('Time')
plt.ylabel(name)
plt.savefig("Plots/{}_{}_dim_{}".format(name,episode,dim))
plt.close()
#plot(states, 0)
data =read_data_to_list("states_all.csv")
for i in range(0,data.shape[2]):
plot(data,i,"states")
data =read_data_to_list("actions_all.csv")
for i in range(0,data.shape[2]):
plot(data,i,"action")
data =read_data_to_list("rewards_all.csv")
for i in range(0,data.shape[2]):
plot(data,i,"rewards")
data =read_data_to_list("sine_from_env.csv")
for i in range(0,data.shape[2]):
plot(data,i,"sine_from_env")
#for i in range(0,len(data)):
# plt.figure()
# plt.plot(data[i][:])
# plt.xlabel('Time')
# plt.ylabel('Action')
# plt.savefig("Plots/Action_{}".format(i))
# plt.close()
#data = np.transpose(pd.read_csv("states_all.csv", header=None, dtype = np.float64).to_numpy())
#for i in range(0,len(data)):
# plt.figure()
# plt.plot(data[i][:])
# plt.xlabel('Time')
# plt.ylabel('State')
# plt.savefig("Plots/State_{}".format(i))
# plt.close()
#data = np.transpose(pd.read_csv("Rewards_all.csv", header=None, dtype = np.float64).to_numpy())
#for i in range(0,len(data)):
# plt.figure()
# plt.plot(data[i][:])
# plt.xlabel('Time')
# plt.ylabel('Rewards')
# plt.savefig("Plots/Rewards_{}".format(i))
# plt.close()
#try:
# data = np.transpose(pd.read_csv("sine_from_env.csv", header=None, dtype = np.float64).to_numpy())
# for i in range(0,len(data)):
# plt.figure()
#plt.xlabel('Time')
## plt.plot(data[i][:])
#plt.ylabel('Sine')
#plt.savefig("Plots/Sine_{}".format(i))
#plt.close()
#except:
#pass