-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG_agent.py
75 lines (62 loc) · 3.14 KB
/
DDPG_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.autograd
import torch.optim as optim
import torch.nn as nn
from actor_critic import *
from utils import *
class DDPGagent:
def __init__(self, env, hidden_size=256, actor_learning_rate=1e-4, critic_learning_rate=1e-3, gamma=0.99, tau=1e-2, max_memory_size=50000):
# Params
self.num_states = env.observation_space.shape[0]
self.num_actions = env.action_space.shape[0]
self.gamma = gamma
self.tau = tau
# Networks
self.actor = Actor(self.num_states, hidden_size, self.num_actions)
self.actor_target = Actor(self.num_states, hidden_size, self.num_actions)
self.critic = Critic(self.num_states + self.num_actions, hidden_size, self.num_actions)
self.critic_target = Critic(self.num_states + self.num_actions, hidden_size, self.num_actions)
for target_param, param in zip(self.actor_target.parameters(), self.actor.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.critic_target.parameters(), self.critic.parameters()):
target_param.data.copy_(param.data)
# Training
self.memory = Memory(max_memory_size)
self.critic_criterion = nn.MSELoss()
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_learning_rate)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=critic_learning_rate)
def get_action(self, state):
state = Variable(torch.from_numpy(state).float().unsqueeze(0))
action = self.actor.forward(state)
action = action.detach().numpy()[0,0]
return action
def update(self, batch_size):
states, actions, rewards, next_states, _ = self.memory.sample(batch_size)
states = np.array(states)
actions = np.array(actions)
rewards = np.array(rewards)
next_states = np.array(next_states)
states = torch.FloatTensor(states)
actions = torch.FloatTensor(actions)
rewards = torch.FloatTensor(rewards)
next_states = torch.FloatTensor(next_states)
# Critic loss
Qvals = self.critic.forward(states, actions)
next_actions = self.actor_target.forward(next_states)
next_Q = self.critic_target.forward(next_states, next_actions.detach())
Qprime = rewards + self.gamma * next_Q
critic_loss = self.critic_criterion(Qvals, Qprime)
# Actor loss
policy_loss = -self.critic.forward(states, self.actor.forward(states)).mean()
# update networks
self.actor_optimizer.zero_grad()
policy_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# update target networks
for target_param, param in zip(self.actor_target.parameters(), self.actor.parameters()):
target_param.data.copy_(param.data * self.tau + target_param.data * (1.0 - self.tau))
for target_param, param in zip(self.critic_target.parameters(), self.critic.parameters()):
target_param.data.copy_(param.data * self.tau + target_param.data * (1.0 - self.tau))