-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathLogger.py
257 lines (219 loc) · 8.15 KB
/
Logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import time
import torch
import datetime as dt
from torch.utils.tensorboard import SummaryWriter
import matplotlib
#matplotlib.use('agg')
#matplotlib.rcParams['agg.path.chunksize'] = 10000
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.nonparametric.smoothers_lowess import lowess
import warnings
from natsort import natsorted
import pickle
class Logger():
def __init__(self,name,datetime=None,use_csv=True,use_tensorboard=False):
"""
Logger logs metrics to CSV files / tensorboard
:name: logging name (e.g. model name / dataset name / ...)
:datetime: date and time of logging start (useful in case of multiple runs). Default: current date and time is picked
:use_csv: log output to csv files (needed for plotting)
:use_tensorboard: log output to tensorboard
"""
self.name = name
if datetime:
self.datetime=datetime
else:
self.datetime = dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.use_csv = use_csv
if use_csv:
os.makedirs('Logger/{}/{}/logs'.format(name,self.datetime),exist_ok=True)
os.makedirs('Logger/{}/{}/plots'.format(name,self.datetime),exist_ok=True)
self.use_tensorboard = use_tensorboard
if use_tensorboard:
directory = 'Logger/tensorboard/{} {}'.format(name,self.datetime)
os.makedirs(directory,exist_ok=True)
self.writer = SummaryWriter(directory)
def log(self,item,value,index):
"""
log index value couple for specific item into csv file / tensorboard
:item: string describing item (e.g. "training_loss","test_loss")
:value: value to log
:index: index (e.g. batchindex / epoch)
"""
if self.use_csv:
filename = 'Logger/{}/{}/logs/{}.log'.format(self.name,self.datetime,item)
if os.path.exists(filename):
append_write = 'a'
else:
append_write = 'w'
with open(filename, append_write) as log_file:
log_file.write("{}, {}\n".format(index,value))
if self.use_tensorboard:
self.writer.add_scalar(item,value,index)
def log_histogram(self,item,values,index):
"""
log index values-histogram couple for specific item to tensorboard
:item: string describing item (e.g. "training_loss","test_loss")
:values: values to log
:index: index (e.g. batchindex / epoch)
"""
if self.use_tensorboard:
self.writer.add_histogram(item,values,index)
def log_model_gradients(self,item,model,index):
"""
log index model-gradients-histogram couple for specific item to tensorboard
:item: string describing model item (e.g. "encoder","discriminator")
:values: values to log
:index: index (e.g. batchindex / epoch)
"""
if self.use_tensorboard:
params = [p for p in model.parameters()]
if len(params)!=0:
gradients = torch.cat([p.grad.view(-1) for p in params if p.grad is not None])
self.writer.add_histogram(f"{item}_grad_histogram",gradients,index)
self.writer.add_scalar(f"{item}_grad_norm2",gradients.norm(2),index)
def plot(self,item, log = False, smoothing = 0.025, ylim = None):
"""
plot item metrics
:item: item
:log: logarithmic scale. Default: False
:smoothing: smoothing of metric. Default: 0.025
:ylim: y-axis limits [lower,upper]
"""
if self.use_csv:
plt.figure(1,figsize=(12,6))
plt.clf()
plt.title(self.name)
plt.ylabel(item)
plt.xlabel('index')
train_loss = np.loadtxt(open("Logger/{}/{}/logs/{}.log".format(self.name,self.datetime,item), "rb"), delimiter=",")
if log:
plt.semilogy(train_loss[:,0],train_loss[:,1],'r')
else:
plt.plot(train_loss[:,0],train_loss[:,1],'r')
train_loss = lowess(train_loss[:,1],train_loss[:,0], is_sorted=True, frac=smoothing, it=0)
if log:
plt.semilogy(train_loss[:,0],train_loss[:,1],'b')
else:
plt.plot(train_loss[:,0],train_loss[:,1],'b')
mean = np.mean(train_loss[:,1])
std = np.std(train_loss[:,1])
if log:
plt.savefig('Logger/{}/{}/plots/{}_log.png'.format(self.name,self.datetime,item),dpi=400)
else:
if ylim is not None:
plt.ylim(ylim)
else:
try:
plt.ylim([mean-2*std,mean+4*std])
except:
pass
plt.savefig('Logger/{}/{}/plots/{}.png'.format(self.name,self.datetime,item),dpi=400)
else:
warnings.warn("set use_csv=True if you want to plot metrics")
def save_state(self,model,optimizer,index="final"):
"""
saves state of model and optimizer
:model: model to save (if list: save multiple models)
:optimizer: optimizer (if list: save multiple optimizers)
:index: index of state to save (e.g. specific epoch)
"""
os.makedirs('Logger/{}/{}/states'.format(self.name,self.datetime),exist_ok=True)
path = 'Logger/{}/{}/states/{}.state'.format(self.name,self.datetime,index)
state = {}
if type(model)is not list:
model = [model]
for i,m in enumerate(model):
state.update({'model{}'.format(i):m.state_dict()})
if type(optimizer) is not list:
optimizer = [optimizer]
for i,o in enumerate(optimizer):
state.update({'optimizer{}'.format(i):o.state_dict()})
torch.save(state, path)
def save_dict(self,dic,index="final"):
"""
saves dictionary - helpful to save the population state of an evolutionary optimization algorithm
:dic: dictionary to store
:index: index of state to save (e.g. specific evolution)
"""
os.makedirs('Logger/{}/{}/states'.format(self.name,self.datetime),exist_ok=True)
path = 'Logger/{}/{}/states/{}.dic'.format(self.name,self.datetime,index)
with open(path,"wb") as f:
pickle.dump(dic,f)
def load_state(self,model,optimizer,datetime=None,index=None,continue_datetime=False):
"""
loads state of model and optimizer
:model: model to load (if list: load multiple models)
:optimizer: optimizer to load (if list: load multiple optimizers; if None: don't load)
:datetime: date and time from run to load (if None: take latest folder)
:index: index of state to load (e.g. specific epoch) (if None: take latest index)
:continue_datetime: flag whether to continue on this run. Default: False
:return: datetime, index (helpful, if datetime / index wasn't given)
"""
if datetime is None:
for _,dirs,_ in os.walk('Logger/{}/'.format(self.name)):
datetime = sorted(dirs)[-1]
if datetime == self.datetime:
datetime = sorted(dirs)[-2]
break
if continue_datetime:
#CODO: remove generated directories...
os.rmdir()
self.datetime = datetime
if index is None:
for _,_,files in os.walk('Logger/{}/{}/states/'.format(self.name,datetime)):
index = os.path.splitext(natsorted(files)[-1])[0]
break
path = 'Logger/{}/{}/states/{}.state'.format(self.name,datetime,index)
state = torch.load(path)
if type(model) is not list:
model = [model]
for i,m in enumerate(model):
m.load_state_dict(state['model{}'.format(i)])
if optimizer is not None:
if type(optimizer)is not list:
optimizer = [optimizer]
for i,o in enumerate(optimizer):
o.load_state_dict(state['optimizer{}'.format(i)])
return datetime, index
def load_dict(self,dic,datetime=None,index=None,continue_datetime=False):
"""
loads state of model and optimizer
:dic: (empty) dictionary to fill with state information
:datetime: date and time from run to load (if None: take latest folder)
:index: index of state to load (e.g. specific epoch) (if None: take latest index)
:continue_datetime: flag whether to continue on this run. Default: False
:return: datetime, index (helpful, if datetime / index wasn't given)
"""
if datetime is None:
for _,dirs,_ in os.walk('Logger/{}/'.format(self.name)):
datetime = sorted(dirs)[-1]
if datetime == self.datetime:
datetime = sorted(dirs)[-2]
break
if continue_datetime:
#CODO: remove generated directories...
os.rmdir()
self.datetime = datetime
if index is None:
for _,_,files in os.walk('Logger/{}/{}/states/'.format(self.name,datetime)):
index = os.path.splitext(natsorted(files)[-1])[0]
break
path = 'Logger/{}/{}/states/{}.dic'.format(self.name,datetime,index)
with open(path,"rb") as f:
state = pickle.load(f)
for key in state.keys():
dic[key] = state[key]
return datetime, index
t_start = 0
def t_step():
"""
returns delta t from last call of t_step()
"""
global t_start
t_end = time.perf_counter()
delta_t = t_end-t_start
t_start = t_end
return delta_t