python3 -m venv hot_leads_predictor_env
source hot_leads_predictor_env\bin\activate
pip install pandas numpy scipy plotly matplotlib ipykernel jupyterlab
python -m ipykernel install --user --name=hot_leads_predictor_env
Input Features -
Categorical features selected based on correlation after null value imputation - ['what_matters_most_to_you_in_choosing_a_course', 'tags']
Numerical features selected based on moderate to strong correlation - ['total_visits', 'total_time_spent_on_website', 'page_views_per_visit']
Precision - 0.82
Recall - 0.92
F1 Score - 0.82
AUC Score - 0.875 (Indicates high Predictive Power)