forked from samholt/NeuralLaplaceControl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathw_latent_ode.py
227 lines (202 loc) · 8.45 KB
/
w_latent_ode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import logging
import matplotlib
import matplotlib.pyplot
import torch
from torch import nn
from torchlaplace import laplace_reconstruct
from baseline_models.latent_ode_lib.create_latent_ode_model import (
create_LatentODE_model_direct,
)
from baseline_models.latent_ode_lib.plotting import Normal
from baseline_models.latent_ode_lib.utils import compute_loss_all_batches_direct
matplotlib.use("Agg")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger = logging.getLogger()
class GeneralLatentODEOfficial(nn.Module):
def __init__(
self,
state_dim,
action_dim,
latent_dim,
hidden_units=64,
state_mean=None,
state_std=None,
action_mean=None,
action_std=None,
normalize=False,
normalize_time=False,
dt=0.05,
classif_per_tp=False,
n_labels=1,
obsrv_std=0.01,
):
super(GeneralLatentODEOfficial, self).__init__()
input_dim = state_dim + action_dim
action_encoder_latent_dim = 2
latents = state_dim + action_encoder_latent_dim
# latents = 2
self.latents = latents
self.output_dim = state_dim
self.normalize = normalize
self.normalize_time = normalize_time
self.register_buffer("state_mean", torch.tensor(state_mean))
self.register_buffer("state_std", torch.tensor(state_std))
self.register_buffer("action_mean", torch.tensor(action_mean))
self.register_buffer("action_std", torch.tensor(action_std))
self.register_buffer("dt", torch.tensor(dt))
obsrv_std = torch.Tensor([obsrv_std]).to(device)
z0_prior = Normal(torch.Tensor([0.0]).to(device), torch.Tensor([1.0]).to(device))
self.model = create_LatentODE_model_direct(
input_dim,
z0_prior,
obsrv_std,
device,
classif_per_tp=classif_per_tp,
n_labels=n_labels,
latents=latents,
units=hidden_units,
gru_units=hidden_units,
).to(device)
self.latents = latents
self.batch_obs_buffer = torch.zeros(1, 4, state_dim).to(device)
def _get_loss(self, dl):
loss = compute_loss_all_batches_direct(self.model, dl, device=device, classif=0)
return loss["loss"], loss["mse"]
def train_loss(self, in_batch_obs, in_batch_action, ts_pred):
if self.normalize:
batch_obs = (in_batch_obs - self.state_mean) / self.state_std
batch_action = (in_batch_action - self.action_mean) / self.action_std
else:
batch_obs = in_batch_obs
batch_action = in_batch_action / 3.0
p_action = self.action_encoder(batch_action) # pyright: ignore
sa_in = torch.cat((batch_obs, p_action), axis=1) # pyright: ignore
if len(sa_in.shape) == 2:
sa_in = sa_in.unsqueeze(1)
p = sa_in.squeeze()
return torch.squeeze(
laplace_reconstruct(
self.laplace_rep_func,
p,
ts_pred,
recon_dim=self.output_dim,
ilt_algorithm=self.ilt_algorithm, # pyright: ignore
)
)
def train_step(self, in_batch_obs, in_batch_action, ts_pred, observed_tp, pred_batch_obs_diff):
if self.normalize:
batch_obs = (in_batch_obs - self.state_mean) / self.state_std
batch_action = (in_batch_action - self.action_mean) / self.action_std
else:
batch_obs = in_batch_obs
batch_action = in_batch_action / 3.0
# if self.normalize_time:
# ts_pred = (ts_pred / (self.dt*8.0))
batch_size = batch_obs.shape[0]
if len(batch_action.shape) == 2:
batch_action = batch_action.unsqueeze(1)
observed_data = torch.cat((batch_obs, in_batch_action), dim=2)
data_to_predict = torch.cat(
(
pred_batch_obs_diff.view(batch_size, 1, -1),
torch.zeros((batch_size, 1, batch_action.shape[2]), device=device, dtype=torch.double),
),
dim=2,
)
batch = {
"observed_data": observed_data,
"observed_tp": observed_tp,
"data_to_predict": data_to_predict,
"tp_to_predict": ts_pred,
"observed_mask": torch.ones_like(observed_data),
"mask_predicted_data": torch.ones_like(data_to_predict),
"labels": None,
"mode": "extrap",
}
loss = self.model.compute_all_losses(batch)
return loss["loss"]
def training_step_(self, batch):
loss = self.model.compute_all_losses(batch)
return loss["loss"]
def validation_step(self, dlval):
loss, mse = self._get_loss(dlval)
return loss, mse
def test_step(self, dltest):
loss, mse = self._get_loss(dltest)
return loss, mse
def forward(self, in_batch_obs, in_batch_action, ts_pred):
if self.normalize:
batch_obs = (in_batch_obs - self.state_mean) / self.state_std
batch_action = (in_batch_action - self.action_mean) / self.action_std
else:
batch_obs = in_batch_obs
batch_action = in_batch_action / 3.0
# if self.normalize_time:
# ts_pred = (ts_pred / (self.dt*8.0))
if len(in_batch_obs.shape) == 3:
observed_data = torch.cat((batch_obs, batch_action), dim=2)
else:
if len(batch_action.shape) == 2:
batch_action = batch_action.unsqueeze(1)
if batch_obs.shape[0] == 1:
self.batch_obs_buffer[0,] = torch.roll(self.batch_obs_buffer[0,], -1, dims=0)
self.batch_obs_buffer[:, -1, :] = batch_obs
observed_data = torch.cat((self.batch_obs_buffer, batch_action), dim=2)
else:
if self.batch_obs_buffer.shape[0] != batch_obs.shape[0]:
self.batch_obs_buffer = torch.zeros(batch_obs.shape[0], 4, batch_obs.shape[1]).to(device)
self.batch_obs_buffer = torch.roll(self.batch_obs_buffer, -1, dims=1)
self.batch_obs_buffer[:, -1, :] = batch_obs
observed_data = torch.cat((self.batch_obs_buffer, batch_action), dim=2)
# observed_data = torch.cat((batch_obs.view(batch_size, 1, -1)\
# .repeat(1, batch_action.shape[1], 1), batch_action),dim=2)
observed_ts = (
torch.arange(-(in_batch_action.shape[1] - 1), 1, 1, device=device, dtype=torch.double) * self.dt
).view(1, -1)
if ts_pred.shape[0] > 1:
if ts_pred.unique().size()[0] == 1:
ts_pred = ts_pred[0].view(1, 1)
else:
raise ValueError("ts_pred must be unique")
batch = {
"observed_data": observed_data,
"observed_tp": observed_ts,
"data_to_predict": None,
"tp_to_predict": ts_pred,
"observed_mask": torch.ones_like(observed_data),
"mask_predicted_data": None,
"labels": None,
"mode": "extrap",
}
predict = self.predict_(batch)
return predict[:, :, : -in_batch_action.shape[2]].squeeze()
def predict_(self, batch):
pred_y, _ = self.model.get_reconstruction(
batch["tp_to_predict"],
batch["observed_data"],
batch["observed_tp"],
mask=batch["observed_mask"],
n_traj_samples=1,
mode=batch["mode"],
)
return pred_y.squeeze(0)
def encode(self, dl):
encodings = []
for batch in dl:
mask = batch["observed_mask"]
truth_w_mask = batch["observed_data"]
if mask is not None:
truth_w_mask = torch.cat((batch["observed_data"], mask), -1)
# pylint: disable-next=unused-variable
mean, std = self.model.encoder_z0(truth_w_mask, torch.flatten(batch["observed_tp"]), run_backwards=True)
encodings.append(mean.view(-1, self.latents))
return torch.cat(encodings, 0)
def _get_and_reset_nfes(self):
"""Returns and resets the number of function evaluations for model."""
iteration_nfes = (
self.model.encoder_z0.z0_diffeq_solver.ode_func.nfe # pyright: ignore
+ self.model.diffeq_solver.ode_func.nfe
)
self.model.encoder_z0.z0_diffeq_solver.ode_func.nfe = 0 # pyright: ignore
self.model.diffeq_solver.ode_func.nfe = 0
return iteration_nfes