forked from samholt/DeepGenerativeSymbolicRegression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_recovery_multi.py
278 lines (254 loc) · 11.1 KB
/
run_recovery_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import logging
import os
from pathlib import Path
import pandas as pd
import torch
import torch.multiprocessing as multiprocessing
from dso.utils import log_and_print
from config import get_config
from exp_main import top_main
conf = get_config()
conf.exp.seed_runs = 40
conf.exp.n_cores_task = 1 # 7 if GPU memory is at least 24GB, else tune to be smaller
conf.exp.seed_start = 0
conf.exp.baselines = ["DGSR-PRE-TRAINED", "NGGP", "NESYMRES", "GP"]
# User must specify the benchmark to run:
conf.exp.benchmark = "fn_d_2" # Possible values ["fn_d_2", "fn_d_5", "l_cd_12", ""fn_d_all"]
# User must specify the pre-trained model paths
COVARS_TO_PRE_TRAINED_MODEL = {
1: "./models/dgsr_pre_train/1_covar_koza/",
2: "./models/dgsr_pre_train/2_covar_koza/",
3: "./models/dgsr_pre_train/3_covar_koza/",
4: "./models/dgsr_pre_train/4_covar_koza/",
5: "./models/dgsr_pre_train/5_covar_koza/",
6: "./models/dgsr_pre_train/6_covar_koza/",
8: "./models/dgsr_pre_train/8_covar_koza/",
12: "./models/dgsr_pre_train/12_covar_koza/",
}
PATH_TO_CHECK_IF_EXISTS = "./models/dgsr_pre_train/1_covar_koza/"
Path("./logs").mkdir(parents=True, exist_ok=True)
benchmark_df = pd.read_csv(conf.exp.benchmark_path, index_col=0, encoding="ISO-8859-1")
df = benchmark_df[benchmark_df.index.str.contains(conf.exp.benchmark)]
datasets = df.index.to_list()
file_name = os.path.basename(os.path.realpath(__file__)).split(".py")[0]
path_run_name = "all_{}-{}_01".format(file_name, conf.exp.benchmark)
def create_our_logger(path_run_name):
logger = multiprocessing.get_logger()
formatter = logging.Formatter("%(processName)s| %(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s")
stream_handler = logging.StreamHandler()
file_handler = logging.FileHandler("./logs/{}_log.txt".format(path_run_name))
stream_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.INFO)
logger.info("STARTING NEW RUN ==========")
logger.info(f"SEE LOG AT : ./logs/{path_run_name}_log.txt")
return logger
logger = create_our_logger(path_run_name)
logger.info(f"See log at : ./logs/{path_run_name}_log.txt")
data_samples_to_use = int(float(df["train_spec"][0].split(",")[-1].split("]")[0]) * conf.exp.dataset_size_multiplier)
def perform_run(tuple_in):
seed, dataset, pre_trained_model, baseline = tuple_in
logger.info(
f"[BASELINE_TESTING NOW] dataset={dataset} \t| baseline={baseline} \t| seed={seed} \t| data_samples={data_samples_to_use} \t| noise={conf.exp.noise}"
)
# try:
if baseline == "NGGP":
result = top_main(
test_dataset=dataset,
seed=seed,
training_equations=200000,
training_epochs=100,
batch_outer_datasets=24,
batch_inner_equations=100,
pre_train=False,
load_pre_trained_path="",
priority_queue_training=conf.exp.priority_queue_training,
gp_meld=conf.gp_meld.run_gp_meld,
model="dso",
train_path="",
test=conf.exp.run_pool_programs_test,
risk_seeking_pg_train=True,
save_true_log_likelihood=conf.exp.save_true_log_likelihood,
p_crossover=conf.gp_meld.p_crossover,
p_mutate=conf.gp_meld.p_mutate,
tournament_size=conf.gp_meld.tournament_size,
generations=conf.gp_meld.generations,
function_set=conf.exp.function_set,
learning_rate=conf.exp.learning_rate,
test_sample_multiplier=conf.exp.test_sample_multiplier,
n_samples=conf.exp.n_samples,
dataset_size_multiplier=conf.exp.dataset_size_multiplier,
noise=conf.exp.noise,
)
elif baseline == "DGSR-PRE-TRAINED":
result = top_main(
test_dataset=dataset,
seed=seed,
training_equations=200000,
training_epochs=100,
batch_outer_datasets=24,
batch_inner_equations=100,
pre_train=True,
skip_pre_training=True,
load_pre_trained_path=pre_trained_model,
priority_queue_training=conf.exp.priority_queue_training,
gp_meld=conf.gp_meld.run_gp_meld,
model="TransformerTreeEncoderController",
train_path="",
test=conf.exp.run_pool_programs_test,
risk_seeking_pg_train=True,
save_true_log_likelihood=conf.exp.save_true_log_likelihood,
p_crossover=conf.gp_meld.p_crossover,
p_mutate=conf.gp_meld.p_mutate,
tournament_size=conf.gp_meld.tournament_size,
generations=conf.gp_meld.generations,
function_set=conf.exp.function_set,
learning_rate=conf.exp.learning_rate,
test_sample_multiplier=conf.exp.test_sample_multiplier,
n_samples=conf.exp.n_samples,
dataset_size_multiplier=conf.exp.dataset_size_multiplier,
noise=conf.exp.noise,
)
elif baseline == "NESYMRES":
result = top_main(
test_dataset=dataset,
seed=seed,
training_equations=200000,
training_epochs=100,
batch_outer_datasets=24,
batch_inner_equations=100,
pre_train=False,
skip_pre_training=True,
load_pre_trained_path="",
priority_queue_training=False,
gp_meld=False,
model="nesymres",
train_path="",
test=conf.exp.run_pool_programs_test,
risk_seeking_pg_train=True,
save_true_log_likelihood=conf.exp.save_true_log_likelihood,
p_crossover=conf.gp_meld.p_crossover,
p_mutate=conf.gp_meld.p_mutate,
tournament_size=conf.gp_meld.tournament_size,
generations=conf.gp_meld.generations,
function_set=conf.exp.function_set,
learning_rate=conf.exp.learning_rate,
test_sample_multiplier=conf.exp.test_sample_multiplier,
n_samples=conf.exp.n_samples,
dataset_size_multiplier=conf.exp.dataset_size_multiplier,
noise=conf.exp.noise,
)
elif baseline == "GP":
result = top_main(
test_dataset=dataset,
seed=seed,
training_equations=200000,
training_epochs=100,
batch_outer_datasets=24,
batch_inner_equations=100,
pre_train=False,
skip_pre_training=True,
load_pre_trained_path="",
priority_queue_training=False,
gp_meld=False,
model="gp",
train_path="",
test=True,
risk_seeking_pg_train=True,
save_true_log_likelihood=conf.exp.save_true_log_likelihood,
p_crossover=conf.gp_meld.p_crossover,
p_mutate=conf.gp_meld.p_mutate,
tournament_size=conf.gp_meld.tournament_size,
generations=conf.gp_meld.generations,
function_set=conf.exp.function_set,
learning_rate=conf.exp.learning_rate,
test_sample_multiplier=conf.exp.test_sample_multiplier,
n_samples=conf.exp.n_samples,
dataset_size_multiplier=conf.exp.dataset_size_multiplier,
noise=conf.exp.noise,
)
result["baseline"] = baseline # pyright: ignore
result["run_seed"] = seed # pyright: ignore
result["dataset"] = dataset # pyright: ignore
log_and_print(f"[TEST RESULT] {result}") # pyright: ignore
return result # pyright: ignore
# except FileNotFoundError as e:
# logger.exception(f'[Error] {e}')
# log_and_print(f"[FAILED BASELINE_TESTING] dataset={dataset} \t|
# baseline={baseline} \t| seed={seed} \t | error={e}")
# traceback.print_exc()
# raise e
# except Exception as e:
# logger.exception(f'[Error] {e}')
# log_and_print(f"[FAILED BASELINE_TESTING] dataset={dataset} \t|
# baseline={baseline} \t| seed={seed} \t | error={e}")
# traceback.print_exc()
def main(dataset, n_cores_task=conf.exp.n_cores_task):
if not os.path.exists(PATH_TO_CHECK_IF_EXISTS):
print("Path does not exist.")
raise ValueError("Path does not exist.")
task_inputs = []
for seed in range(conf.exp.seed_start, conf.exp.seed_start + conf.exp.seed_runs):
for baseline in conf.exp.baselines:
task_inputs.append((seed, dataset, pre_trained_model, baseline))
if n_cores_task is None:
n_cores_task = multiprocessing.cpu_count()
if n_cores_task >= 2:
pool_outer = multiprocessing.Pool(n_cores_task)
for i, result in enumerate(pool_outer.imap(perform_run, task_inputs)):
log_and_print(
"INFO: Completed run {} of {} in {:.0f} s | LATEST TEST_RESULT {}".format(
i + 1, len(task_inputs), result["t"], result
)
)
else:
for i, task_input in enumerate(task_inputs):
result = perform_run(task_input)
log_and_print(
"INFO: Completed run {} of {} in {:.0f} s | LATEST TEST_RESULT {}".format(
i + 1, len(task_inputs), result["t"], result
)
)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
from dso.config import load_config
from dso.task import set_task
from config import (
dsoconfig_factory,
nesymres_dataset_config_factory,
nesymres_function_set_factory,
nesymres_train_config_factory,
)
dsoconfig = dsoconfig_factory()
log_and_print(df.to_string())
for dataset, row in df.iterrows():
covars = row["variables"]
try:
pre_trained_model = COVARS_TO_PRE_TRAINED_MODEL[covars]
except KeyError:
# pylint: disable-next=raise-missing-from
raise ValueError(
f"No pre-trained model in folder './models/pre_train/' for covars={covars}. "
)
# pre_trained_model = ""
nesymres_dataset_config = nesymres_dataset_config_factory()
nesymres_train_config = nesymres_train_config_factory()
nesymres_function_set = nesymres_function_set_factory()
dsoconfig["task"]["dataset"] = dataset
config = load_config(dsoconfig)
set_task(config["task"])
try:
main(dataset)
except FileNotFoundError as e:
# pylint: disable-next=raise-missing-from
if 'nesymres_pre_train' in str(e):
raise FileNotFoundError(
f"Please download the baseline pre-trained models for NeuralSymbolicRegressionThatScales from https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales and put them into the folder `models/nesymres_pre_train`. No pre-trained model of {e.filename} in folder './models/pre_train/' for covars={covars}. "
)
else:
raise FileNotFoundError(
f"No pre-trained model of {e.filename} in folder './models/pre_train/' for covars={covars}. "
)
logger.info("Fin.")