forked from ORippler/MSD_2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
161 lines (128 loc) · 6.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import tensorflow as tf
import os
from model import model
from dataset import TFRdataset
import SimpleITK as sitk
import numpy as np
from metrics import generalized_dice_loss
import json
from utils.utils import distribution_strategy
def main(*kwargs):
fpath = args['input']
mdir = args['modeldir']
loss = generalized_dice_loss
os.environ["CUDA_VISIBLE_DEVICES"] = args['device']
weighting = args['weighting']
fraction = args['fraction']
variance_ = args['variance']
num_gpu = len(os.environ["CUDA_VISIBLE_DEVICES"].split(','))
print("CUDA_VISIBLE_DEVICES: {}".format(os.environ["CUDA_VISIBLE_DEVICES"]))
multi_gpu = distribution_strategy(num_gpu)
dset = TFRdataset(fpath=fpath)
# ensure minimum of 8 voxels in every dim
if dset.num_modalities > 1:
n_possible_depths = (np.log2(dset.shapes[:-1]) - 3).astype(int)
else:
n_possible_depths = (np.log2(dset.shapes) - 3).astype(int)
# convert to channels first
n_possible_depths = np.roll(n_possible_depths, 1)
# limit model_depth due to GPU_mem
depths = [4 if depth > 4 else depth for depth in n_possible_depths]
if dset.num_modalities > 1:
input_shape = [int(dset.shapes[-1])] \
+ [2**(depth+3) for depth in n_possible_depths]
else:
input_shape = [1] \
+ [2**(depth+3) for depth in n_possible_depths]
# limit input_shape due to GPU_mem
input_shape = list(np.clip(input_shape, 0,
input_shape[:-3] + [128, 256, 256]))
if dset.num_modalities > 1:
dset.spacing = [dset.dset['spacing'][-2],
dset.dset['spacing'][0],
dset.dset['spacing'][1]]
else:
dset.spacing = [dset.dset['spacing'][-1],
dset.dset['spacing'][0],
dset.dset['spacing'][1]]
print(dset.spacing)
print(input_shape)
print(depths)
# number of necessary repeats to get 300 "epochs" of 100 iterations each
num_iters = dset.dset['numTraining'] / (100 * num_gpu)
num_epoch_repeats = int(300 / num_iters)
runconfig = tf.estimator.RunConfig(save_summary_steps=500,
save_checkpoints_steps=500,
train_distribute=multi_gpu)
estimator = tf.estimator.Estimator(
model_fn=model,
model_dir=mdir,
params={'input_shape': input_shape,
'n_base_filters': 6,
'depth': depths,
'dropout_rate': 0.3,
'n_segmentaton_levels': np.max(depths),
'n_labels': dset.num_classes,
'optimizer': 'Adam',
'initial_learning_rate': 5e-4,
'loss_function': loss,
'weighting': weighting},
config=runconfig)
def train_file(estimator, dataset):
return estimator.train(
input_fn=lambda: dataset.provide_tf_dataset(
number_epochs=num_epoch_repeats,
shape=input_shape[1:],
batch_size=1,
num_parallel_calls=os.cpu_count(),
fraction=fraction,
shuffle_size=100,
variance=(0, variance_),
mode='train',
compression=None,
multi_GPU=num_gpu))
train_file(estimator, dataset=dset)
# Export model. Static input shapes are required until tf issue #20527
# is fixed
if dset.num_modalities > 1:
input_shape = [dset.shapes[-1]] \
+ [val - (val % 2**(depths[index])) for index, val in enumerate(reversed(dset.shapes[:-1]))]
else:
input_shape = [1] \
+ [val - (val % 2**(depths[index])) for index, val in enumerate(reversed(dset.shapes))]
input_shape = list(np.clip(input_shape, 0,
[input_shape[0]] + [128, 512, 512]))
exported_input = {'img': tf.placeholder(tf.float32,
shape=[None] + input_shape,
name='img')}
input_receiver_fn = tf.estimator.export.\
build_raw_serving_input_receiver_fn(exported_input)
estimator.export_savedmodel(mdir, input_receiver_fn)
dset.dset['patch_shape'] = [int(i) for i in input_shape[1:]]
mdir_folders = os.listdir(mdir)
for i in mdir_folders:
if os.path.isdir(os.path.join(mdir, i)):
dset.dset['fpath_model'] = os.path.join(mdir, i)
break
with open(os.path.join(fpath, 'dataset.json'), 'w') as fp:
json.dump(dset.dset, fp)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train 3D Net for \
MSD_challenge dataset')
parser.add_argument('-i', '--input', help='input (root) path for dataset',
required=True)
parser.add_argument('-m', '--modeldir', help='path to store trained model',
required=True)
parser.add_argument('-d', '--device', help='set Variable CUDA_VISIBLE DEVICES',
required=False, default=os.environ["CUDA_VISIBLE_DEVICES"])
parser.add_argument('-w', '--weighting', help='choose weighting for dice loss.\
Must be one of ["linear", "volume"]',
required=False, default="linear")
parser.add_argument('-f', '--fraction', help='fraction of train images cropped \
around forgeround',
required=False, type=float, default=0.0)
parser.add_argument('-v', '--variance', help='variance of applied gaussian noise, \
0 == No noise', required=False, type=float, default=0.01)
args = vars(parser.parse_args())
main(args)