-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest.py
171 lines (130 loc) · 5.83 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#-*- coding:utf-8 -*-
import os
import argparse
import numpy as np
import time
import sys
import argparse
import paddle
import paddle.fluid as fluid
import cv2
from collections import Counter
from scipy.integrate import simps
from matplotlib import pyplot as plt
from model.mobilenetv2 import build_model
from data.WLFW import WLFWDataReader
import data.WLFW
from loss.pfld_loss import Loss
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.99'
pretrain_model = 1 #1 means pretrain_model
epochs = 3
total_step = 150000 * epochs
path = os.getcwd()
def create_reader(rows=224,cols=224):
train_dataset = WLFWDataReader("data/train_data/list.txt")
test_dataset = WLFWDataReader("data/test_data/list.txt")
return train_dataset,test_dataset
def create_model(model='',image_shape=[112,112],class_num=98):
img = fluid.layers.data(name='img', shape=[3] + image_shape, dtype='float32')
landmark = fluid.layers.data(name='landmark', shape=[196],dtype='float32')
attribute = fluid.layers.data(name='attribute', shape=[6],dtype='float32')
euler_angle = fluid.layers.data(name='euler_angle', shape=[3],dtype='float32')
landmarks_pre,angles_pre = build_model(img)
weighted_loss, loss = Loss().PFLDLoss(attribute, landmark, euler_angle, angles_pre, landmarks_pre, 250)
print('img.shape = ',img.shape)
print('landmark.shape = ',landmark.shape)
print('euler_angle.shape = ',euler_angle.shape)
print('attribute.shape = ',attribute.shape)
return landmarks_pre,angles_pre,weighted_loss,loss
def load_model(exe,program,model=''):
if model == 'mobilenetv2':
pretrained_model = path+"/params/mobilenetv2"
def if_exist(var):
return os.path.exists(os.path.join(pretrained_model, var.name))
fluid.io.load_vars(exe, pretrained_model, main_program=program,
predicate=if_exist)
elif model == 'mobilenetv3':
fluid.io.load_params(executor=exe, dirname="", filename=path+'/params/mobilenetv3.params', main_program=program)
def compute_nme(preds, target):
""" preds/target:: numpy array, shape is (N, L, 2)
N: batchsize L: num of landmark
"""
N = preds.shape[0]
L = preds.shape[1]
rmse = np.zeros(N)
for i in range(N):
pts_pred, pts_gt = preds[i, ], target[i, ]
if L == 19: # aflw
interocular = 34 # meta['box_size'][i]
elif L == 29: # cofw
interocular = np.linalg.norm(pts_gt[8, ] - pts_gt[9, ])
elif L == 68: # 300w
# interocular
interocular = np.linalg.norm(pts_gt[36, ] - pts_gt[45, ])
elif L == 98:
interocular = np.linalg.norm(pts_gt[60, ] - pts_gt[72, ])
else:
raise ValueError('Number of landmarks is wrong')
rmse[i] = np.sum(np.linalg.norm(pts_pred - pts_gt, axis=1)) / (interocular * L)
return rmse
def compute_auc(errors, failureThreshold, step=0.0001, showCurve=False):
nErrors = len(errors)
xAxis = list(np.arange(0., failureThreshold + step, step))
ced = [float(np.count_nonzero([errors <= x])) / nErrors for x in xAxis]
AUC = simps(ced, x=xAxis) / failureThreshold
failureRate = 1. - ced[-1]
if showCurve:
plt.plot(xAxis, ced)
plt.show()
return AUC, failureRate
def test(model,DataSet):
landmarks_pre,angles_pre,weighted_loss,loss = create_model(model='ResNet')
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
#fluid.memory_optimize(fluid.default_main_program(),print_log=False, skip_opt_set=set([landmarks_pre.name,angles_pre.name,weighted_loss.name,loss.name]))
if pretrain_model:
load_model(exe,fluid.default_main_program(),model=model)
print("load model succeed")
else:
print("load succeed")
def trainLoop():
batches = DataSet.get_batch_generator(250, 10)
nme_list = []
for i, imgs, landmarks_gt, attributes_gt, euler_angles_gt in batches:
preTime = time.time()
result = exe.run(fluid.default_main_program(),
feed={'img': imgs,
'landmark': landmarks_gt,
'attribute':attributes_gt,
'euler_angle':euler_angles_gt },
fetch_list=[weighted_loss,loss,landmarks_pre,angles_pre])
nowTime = time.time()
landmarks = result[2]
#print(landmarks)
#print('gt',landmarks_gt.shape)
#print('pre',landmarks.shape)
landmarks = landmarks.reshape(landmarks.shape[0], -1, 2) # landmark
landmarks_gt = landmarks_gt.reshape(landmarks_gt.shape[0], -1, 2)# landmarks_gt
nme_temp = compute_nme(landmarks, landmarks_gt)
for item in nme_temp:
nme_list.append(item)
if i % 2 == 0:
print("step {:d},loss {:.6f},step_time: {:.3f}".format(
i,result[1][0],nowTime - preTime))
fluid.io.save_inference_model(dirname=path+'/inference', feeded_var_names=['img'], target_vars=[landmarks_pre,angles_pre], executor=exe)
# nme
print('nme: {:.4f}'.format(np.mean(nme_list)))
# auc and failure rate
failureThreshold = 0.1
auc, failure_rate = compute_auc(nme_list, failureThreshold)
print('auc @ {:.1f} failureThreshold: {:.4f}'.format(failureThreshold, auc))
print('failure_rate: {:}'.format(failure_rate))
trainLoop()
if __name__ == "__main__":
parse = argparse.ArgumentParser(description='')
parse.add_argument('--model', help='model name', nargs='?')
args = parse.parse_args()
model = "mobilenetv2"
train_dataset,test_dataset = create_reader()
test(model,test_dataset)