-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel (3).py
54 lines (41 loc) · 1.73 KB
/
model (3).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import torch
import torch.nn as nn
import torch.optim as optim
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.encoder = nn.Embedding(input_size, hidden_size)
self.rnn = nn.RNN(hidden_size, hidden_size, n_layers)
self.decoder = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
input = self.encoder(input.view(1, -1))
output, hidden = self.rnn(input.view(1, 1, -1), hidden)
output = self.decoder(output.view(1, -1))
return output, hidden
def init_hidden(self):
return torch.zeros(self.n_layers, 1, self.hidden_size)
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.encoder = nn.Embedding(input_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, n_layers)
self.decoder = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
input = self.encoder(input.view(1, -1))
output, hidden = self.lstm(input.view(1, 1, -1), hidden)
output = self.decoder(output.view(1, -1))
return output, hidden
def init_hidden(self):
return (torch.zeros(self.n_layers, 1, self.hidden_size),
torch.zeros(self.n_layers, 1, self.hidden_size))