-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_test_first_n.py
221 lines (155 loc) · 6.25 KB
/
ml_test_first_n.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pandas as pd
import os
from multiprocessing import Pool
from astropy.coordinates import SkyCoord, ICRS
from astropy import units as u
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.pyplot import cla
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.preprocessing import OneHotEncoder
from sklearn import preprocessing
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
def plotGenricSkyMap(coords):
"""
A generic function to plot a skymap for the given Sky coord array.
Args:
coords (numpy array): A numpy array of skycoord objects
"""
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection="mollweide")
scatter = ax.scatter(-coords.ra.wrap_at(180 * u.deg).radian, coords.dec.wrap_at(180 * u.deg).radian, s=3, vmin=0)
ax.grid(True)
ax.set_xticklabels(['10h', '8h', '6h', '4h', '2h', '0h', '22h', '20h', '18h', '16h', '14h'])
plt.show()
def getEncodedData(df, enc):
# Removing duplicate SNID. Happens because flares can be in the sky maps for multiple KN's
df = df.drop_duplicates(subset=['SNID'])
# Make the matrices
x = df[['BAND','PRE-BAND','POST-BAND']]
x = enc.transform(x)
# Adding the time to prev and next det as features
x_new = np.zeros((len(df), 24))
x_new[:, :20] = x
x_new[:, 20] = df['TIME-TO-PREV']
x_new[:, 21] = df['TIME-TO-NEXT']
x_new[:, 22] = df['MDF_DENSITY']
x_new[:, 23] = df['GW_PROB']
# x_new[:, 23] = df['NEXT-PHOT-FLAG']
# x_new[:, 24] = df['NUM_DETECTIONS']
features = list(enc.get_feature_names_out())
features.append('TIME-TO-PREV')
features.append('TIME-TO-NEXT')
features.append('MDF_DENSITY')
features.append('GW_PROB')
# features.append('NEXT-PHOT-FLAG')
# features.append('NUM_DETECTIONS')
# Creating binary class column
y_new = []
for c in df['CLASS']:
if c == 'KN Bulla' or c == 'KN Kasen':
y_new.append(0)
elif c == 'MDF':
y_new.append(1)
x_new = pd.DataFrame(x_new, columns=features)
y_new = pd.DataFrame(y_new, columns=['CLASS'])
return x_new, y_new
mappings_bulla = pd.read_csv('test_data/MDF_VS_KN-KilonovaSims/Bulla/SNID_TO_SKYMAP.csv')
mappings_kasen = pd.read_csv('test_data/MDF_VS_KN-KilonovaSims/Kasen/SNID_TO_SKYMAP.csv')
bulla_features = []
kasen_features = []
for i in range(len(mappings_bulla)):
SNID = mappings_bulla['SNID'][i]
try:
path = f'Bulla_features/{SNID}.csv'
df = pd.read_csv(path)
bulla_features.append(df)
except:
print(f'Bulla SNID {SNID} features not found')
for i in range(len(mappings_kasen)):
SNID = mappings_kasen['SNID'][i]
try:
path = f'Kasen_features/{SNID}.csv'
df = pd.read_csv(path)
kasen_features.append(df)
except:
print(f'Kasen SNID {SNID} features not found. ')
train_fraction = 0.6
bulla_train_size = int(train_fraction * len(bulla_features))
bulla_train = pd.concat(bulla_features[:bulla_train_size])
bulla_test = pd.concat(bulla_features[bulla_train_size:])
kasen_train_size = int(train_fraction * len(kasen_features))
kasen_train = pd.concat(kasen_features[:kasen_train_size])
kasen_test = pd.concat(kasen_features[kasen_train_size:])
complete_training_set = pd.concat([kasen_train, bulla_train])
# Removing duplicate SNID. Happens because flares can be in the sky maps for multiple KN's
complete_training_set = complete_training_set.drop_duplicates(subset=['SNID'])
all_SNID = complete_training_set['SNID']
# SNID of m dwarf flares only
mdf_SNID = complete_training_set[complete_training_set['CLASS'] == 'MDF']['SNID']
# Use the last 20 % of flare SNID just for validating
test_SNID = mdf_SNID[int(0.8 * len(mdf_SNID)):]
# Remove any SNID's used for testing from the training set
complete_training_set = complete_training_set[complete_training_set.SNID.isin(test_SNID) == False]
train_SNID = complete_training_set['SNID']
# Make the matrices
x = complete_training_set[['BAND','PRE-BAND','POST-BAND']]
# One hot encoding for passband features
enc = OneHotEncoder(sparse=False)
enc.fit(x)
#Classifier
x_train, y_train = getEncodedData(complete_training_set, enc)
weights = {
0:0.95, # KN
1:0.05 # MDF
}
print('Fitting model')
clf=RandomForestClassifier(n_estimators=1000, random_state=42, class_weight=weights)
clf.fit(x_train, y_train['CLASS'])
n_max = 50
bulla_fractions = []
kasen_fractions = []
n_values = []
for n in range(1, n_max + 1):
total_bulla = 0
found_kn_bulla = 0
for table in bulla_features[bulla_train_size:]:
table = table[table.SNID.isin(train_SNID) == False]
test_x, test_y = getEncodedData(table, enc)
probs_kn = clf.predict_proba(test_x)[:, 1]
# Sort by prob of being a KN and get the first 5 indices
idx = np.argsort(probs_kn)[:min(n, len(probs_kn))]
sorted_probs = probs_kn[idx]
y_true = test_y['CLASS'][idx]
# Check if the KN exists in the top n candidates
if 0 in y_true:
found_kn_bulla += 1
total_bulla += 1
print(f'Found {found_kn_bulla} out of {total_bulla} kilo nova when n = {n}.')
total_kasen = 0
found_kn_kasen = 0
for table in kasen_features[kasen_train_size:]:
table = table[table.SNID.isin(train_SNID) == False]
test_x, test_y = getEncodedData(table, enc)
probs_kn = clf.predict_proba(test_x)[:, 1]
# Sort by prob of being a KN and get the first 5 indices
idx = np.argsort(probs_kn)[:min(n, len(probs_kn))]
sorted_probs = probs_kn[idx]
y_true = test_y['CLASS'][idx]
# Check if the KN exists in the top n candidates
if 0 in y_true:
found_kn_kasen += 1
total_kasen += 1
print(f'Found {found_kn_kasen} out of {total_kasen} kilo nova when n = {n}.')
n_values.append(n)
bulla_fractions.append(found_kn_bulla/total_bulla)
kasen_fractions.append(found_kn_kasen/total_kasen)
plt.plot(n_values, bulla_fractions, label='Bulla')
plt.plot(n_values, kasen_fractions, label='Kasen')
plt.ylabel('Fraction of KN found')
plt.xlabel('Maximum number of candidates considered')
plt.legend()
plt.show()