Skip to content

Latest commit

 

History

History
44 lines (40 loc) · 2.91 KB

README.md

File metadata and controls

44 lines (40 loc) · 2.91 KB

Representing Long-Range Context for Graph Neural Networks with Global Attention

@inproceedings{Wu2021GraphTrans,
  title={Representing Long-Range Context for Graph Neural Networks with Global Attention},
  author={Wu, Zhanghao and Jain, Paras and Wright, Matthew and Mirhoseini, Azalia and Gonzalez, Joseph E and Stoica, Ion},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Overview

We release the PyTorch code for the GraphTrans [paper]

Installation

To setup the Python environment, please install conda first. All the required environments are in requirement.yml.

conda env create -f requirement.yml

How to Run

To run the experiments, please refer to the commands below (taking OGBG-Code2 as an example):

# GraphTrans (GCN-Virtual)
python main.py --configs configs/code2/gnn-transformer/JK=cat/pooling=cls+norm_input.yml --runs 5
# GraphTrans (GCN)
python main.py --configs configs/code2/gnn-transformer/no-virtual/pooling=cls+norm_input.yml --runs 5
# Or to use slurm
sbatch ./slurm-run.sh ”configs/code2/gnn-transformer/JK=cat/pooling=cls+norm_input.yml --runs 5”

The config path for each dataset/model can be found in the result table below.

Results

Dataset Model Valid Test Config
OGBG-Code2 GraphTrans (GCN) 0.1599±0.0009 0.1751±0.0015 Config
GraphTrans (PNA) 0.1622±0.0025 0.1765±0.0033 Config
GraphTrans (GCN-Virtual) 0.1661±0.0012 0.1830±0.0024 Config
OGBG-Molpcba GraphTrans (GIN) 0.2893±0.0050 0.2756±0.0039 Config
GraphTrans (GIN-Virtual) 0.2867±0.0022 0.2761±0.0029 Config
NCI1 GraphTrans (small, GCN) 81.3±1.9 Config
GraphTrans (large, GIN) 82.6±1.2 Config
NCI109 GraphTrans (small, GCN) 79.2±2.2 Config
GraphTrans (large, GIN) 82.3±2.6 Config