-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsq.py
547 lines (469 loc) · 22.6 KB
/
sq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import asyncio
import argparse
import datetime
import subprocess
import getpass
import pandas as pd
import shlex
import sys
from tabulate import tabulate
from termcolor import colored
from pathlib import Path
from os import path
def run_cmd(cmd):
async def inner():
proc = await asyncio.create_subprocess_shell(
shlex.join(cmd), stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
stdout, stderr = await proc.communicate()
return stdout.decode('utf-8', 'backslashreplace')
return asyncio.run(inner())
def freeze(dest_dir, name, data):
with open(path.join(dest_dir, name), 'w') as f:
f.write(data)
def read_slurm_as_df(stdout, sep = '|'):
# The first line of the data is the column headers, the rest are job data entries
# Rows are separated by newline, columns are separated by pipe |
columns, *data = [ row.split(sep) for row in stdout.strip().split('\n') ]
# Sometimes the fields can contain the pipe symbol |
# In this case it is impossible to parse unambiguously so the row is thrown out
# (potentially leading to incorrect results).
# This could be improved by falling back to other commands (perhaps querying one field at a time)
# if the result is not parsable, but this will increase load on Slurm.
#
# In the wild, this is seen when the node status (from sinfo) is:
# NHC: check_fs_mount: /tmp mount options incorrect (should match /(^|,)rw($|,)/)
filtered_data = [ row for row in data if len(row) == len(columns) ]
if len(data) != len(filtered_data):
print(colored('Warning: Encountered unparsable data in Slurm command output. Some results shown here may be missing or incorrect. Use `squeue` for direct data from Slurm.', 'white', 'on_red'), file=sys.stderr)
data = filtered_data
df = pd.DataFrame(data=data, columns=columns)
columns = []
column_counts = {}
for col in df.columns:
if col in column_counts:
column_counts[col] += 1
col = col + '_' + str(column_counts[col])
if col not in column_counts:
column_counts[col] = 1
columns.append(col)
df.columns = columns
return df
def load_from(load_file):
def inner(f):
def cmd(load_dir, *args):
if load_dir:
with open(path.join(load_dir, load_file), 'r') as file:
return file.read()
return f(*args)
return cmd
return inner
@load_from('qos')
def qos_cmd():
return run_cmd(['sacctmgr', 'show', 'QOS', '-P'])
def get_qos_df(stdout):
return read_slurm_as_df(stdout)
@load_from('squeue')
def squeue_cmd():
return run_cmd(['squeue', '--array-unique', '--format', '%all'])
def get_squeue_df(stdout):
return read_slurm_as_df(stdout)
@load_from('sprio')
def sprio_cmd():
return run_cmd(['sprio', '-o', '%A|%c|%F|%i|%J|%N|%Q|%r|%T|%u|%Y'])
def get_sprio_df(stdout):
df = read_slurm_as_df(stdout)
df['PRIORITY'] = df['PRIORITY'].astype(int)
return df
@load_from('assoc')
def assoc_cmd():
return run_cmd(['sacctmgr', '-p', 'show', 'associations'])
def get_assoc_df(stdout):
return read_slurm_as_df(stdout)
@load_from('sinfo')
def sinfo_cmd():
return run_cmd(['sinfo', '-N', '--format', '%N,%P'])
## return run_cmd(['sinfo', '--format', '%all'])
def get_sinfo_df(stdout):
df = read_slurm_as_df(stdout, ',')
df.columns = df.columns.str.strip()
return df
@load_from('resv')
def resv_cmd():
return run_cmd(['scontrol', 'show', 'reservation'])
def get_resv_df(stdout):
if stdout.startswith('No reservations in the system'):
return pd.DataFrame(columns=['Nodes','StartTime','EndTime'])
resvs = []
for line in stdout.split('\n'):
if line and not line.startswith(' '):
resvs.append({})
for word in line.strip().split(' '):
key, value = word[:word.find('=')], word[word.find('=')+1:]
if key and value:
resvs[-1][key] =value
df = pd.DataFrame(resvs)
df['Nodes'] = df['Nodes'].str.split(',')
df['StartTime'] = df['StartTime'].apply(datetime.datetime.fromisoformat)
df['EndTime'] = df['EndTime'].apply(datetime.datetime.fromisoformat)
return df
@load_from('recent_jobs')
def recent_jobs_cmd(username, start_time=None):
last_week = (datetime.date.today() - datetime.timedelta(days=7)).isoformat()
start_time = start_time or last_week
return run_cmd(['sacct', '-u', username, '-P', '--format', 'ALL', '-S', start_time])
def get_recent_jobs(stdout, limit=-1):
df = read_slurm_as_df(stdout) \
.sort_values(by='End', ascending=False)
df = df[~df['JobID'].str.endswith('.batch')]
if limit >= 0:
df = df.head(limit)
return df
def cache_property(f):
cached = None
def inner(self, *args):
nonlocal cached
if cached is None:
cached = f(self, *args)
return cached
return inner
class SlurmInfo:
def __init__(self, load_dir):
self.load_dir = load_dir
@cache_property
def squeue_df(self):
return get_squeue_df(squeue_cmd(self.load_dir))
@cache_property
def qos_df(self):
return get_qos_df(qos_cmd(self.load_dir))
@cache_property
def sprio_df(self):
return get_sprio_df(sprio_cmd(self.load_dir))
@cache_property
def resv_df(self):
return get_resv_df(resv_cmd(self.load_dir))
@cache_property
def sinfo_df(self):
return get_sinfo_df(sinfo_cmd(self.load_dir))
@cache_property
def assoc_df(self):
return get_assoc_df(assoc_cmd(self.load_dir))
@cache_property
def get_recent_jobs(self, username, start_time=None, limit=-1):
return get_recent_jobs(recent_jobs_cmd(self.load_dir, username, start_time), limit)
def has_current_jobs(self, username):
return self.squeue_df()[self.squeue_df()['USER'] == username].shape[0] > 0
def available_qos(self, username, account, partition):
return self.assoc_df()[
(self.assoc_df()['User'] == username) &
(self.assoc_df()['Account'] == account) &
(self.assoc_df()['Partition'] == partition)
]['QOS'].str.split(',').values[0]
def freeze(self, dest_dir, username, start_time):
Path(dest_dir).mkdir(parents=True, exist_ok=True)
freeze(dest_dir, 'squeue', squeue_cmd(self.load_dir))
freeze(dest_dir, 'qos', qos_cmd(self.load_dir))
freeze(dest_dir, 'sprio', sprio_cmd(self.load_dir))
freeze(dest_dir, 'resv', resv_cmd(self.load_dir))
freeze(dest_dir, 'sinfo', sinfo_cmd(self.load_dir))
freeze(dest_dir, 'assoc', assoc_cmd(self.load_dir))
freeze(dest_dir, 'recent_jobs', recent_jobs_cmd(self.load_dir, username, start_time))
def get_table(df):
return tabulate(df, df.columns, tablefmt='pretty', showindex='never')
def color_state(state):
colors = {
'PENDING':'yellow',
'RUNNING': 'green',
'COMPLETED': 'cyan',
'COMPLETING': 'cyan',
'CANCELLED': 'magenta',
'TIMEOUT': 'red',
'RESV_DEL_HOLD': 'red',
'OUT_OF_MEMORY': 'red',
'NODE_FAIL': 'red',
'FAILED': 'red',
}
state = state.split(' ')[0].strip()
return colored(state, colors[state]) if state in colors else state
def color_reason(reason):
colors = {
}
if reason == 'None':
return ''
return colored(reason, colors[reason]) if reason in colors else reason
def display_time(time):
return '' if time == '0:00' else time
def display_recent_jobs(sacct, quiet):
df = sacct.copy()
df['JOBID'] = df['JobID']
df['Name'] = df['JobName']
df['Job ID'] = df.apply(display_job_id, axis=1)
df['Nodes'] = df['NNodes'] + 'x ' + df['Partition']
df['State'] = df['State'].apply(color_state)
df['End'] = df['End'].str.replace('T', ' ')
df = df[['Job ID', 'Name', 'Account', 'Nodes', 'Elapsed', 'End', 'State']].sort_values(by='End', ascending=False)
if df.shape[0] == 0:
print('No recent jobs (within the last week).')
else:
print('Recent jobs (most recent job first):')
print(get_table(df))
# print('For more information about a previous job, run:', 'sacct -j $JOB_ID')
df = sacct.copy()
df['JOBID'] = df['JobID']
display_problems(df, quiet)
def display_job_id(pending_job):
SEVERITY_COLORS = {
SEVERITY['LOW']: [],
SEVERITY['MEDIUM']: ['grey', 'on_yellow'],
SEVERITY['HIGH']: ['white', 'on_red']
}
color = SEVERITY_COLORS[pending_job['PROBLEMS'][0]]
return colored(pending_job['JOBID'], *color) if color else pending_job['JOBID']
def qos_node_limit(qos_df):
return df['GrpTRES'].apply(lambda n: n.split('=')[1])
def parse_tres(tres_str):
tres = {}
for kv in tres_str.split(','):
if '=' in kv:
key, value = kv.split('=')
tres[key] = int(value)
if ':' in kv:
tmp = kv.split(':')
# Modified to account for "gres:V100:2"
# key, value = kv.split(':')
key = tmp[0]
tres[key] = int(tmp[-1]) # int(value)
return tres
def parse_tres_nodes(nodes, tres_per_node, other):
tres = parse_tres(tres_per_node)
tres = { 'gres/' + k: v * int(nodes) for k, v in tres.items() }
tres['node'] = int(nodes)
for key, value in other.items():
tres[key] = int(value)
return tres
def parse_tres_queue_job(queue_job):
return parse_tres_nodes(queue_job['NODES'], queue_job['TRES_PER_NODE'], {
'cpu': queue_job['CPUS']
})
def display_grp_tres(tres):
tres_strs = []
for key, value in tres.items():
if value == '1' and key.endswith('s'):
key = key[:-1]
if not key.endswith('s') and value != '1':
key = key + 's'
tres_strs.append(f"{value} {key}")
return ', '.join(sorted(tres_strs, key=lambda x: x.split(' ')[1]))
def sum_dicts(dicts):
total = {}
for d in dicts:
for k, v in d.items():
if k not in total:
total[k] = 0
total[k] += v
return total
def filter_keys(keys, obj):
return { k: v for k, v in obj.items() if k in keys }
SEVERITY = {
'LOW': 0,
'MEDIUM': 1,
'HIGH': 2
}
def parse_timelimit(timelimit_str):
def safe_get(arr, i, default=0):
if len(arr) > i:
return int(arr[i])
return default
days, hours, minutes, seconds = 0, 0, 0, 0
days = timelimit_str.split('-')[0] if '-' in timelimit_str else 0
if '-' in timelimit_str:
days = int(timelimit_str.split('-')[0])
timelimit_str = timelimit_str.split('-')[1]
else:
days = 0
parts = timelimit_str.split(':')
hours, minutes, seconds = safe_get(parts, 0), safe_get(parts, 1), safe_get(parts, 2)
return datetime.timedelta(days=days, hours=hours, minutes=minutes, seconds=seconds)
def check_resv_conflicts(pending_job, resv_df, sinfo_df):
req_nodes = pending_job['REQ_NODES'].split(',') if pending_job['REQ_NODES'] else []
num_nodes = int(pending_job['NODES'])
time_limit = parse_timelimit(pending_job['TIME_LIMIT'])
earliest_start = datetime.datetime.now()
earliest_end = datetime.datetime.now() + time_limit
# For each node slot, is there a node available to fill it that is not in a reservation?
# Check if each of the requested nodes does not intersect with a partition
#
# For the remaining slots which are not requested nodes,
# check if there are at least that many that are not overlapping with
# any of the interfering reservations
resvs = resv_df[
((resv_df['StartTime'] <= earliest_start) & (resv_df['EndTime'] >= earliest_start))
| ((resv_df['StartTime'] <= earliest_end) & (resv_df['EndTime'] >= earliest_end))]
interfering_resvs = []
for node in req_nodes:
for _, resv in resvs.iterrows():
if node in resv['Nodes']:
interfering_resvs.append(resv)
possible_nodes = sinfo_df[sinfo_df['PARTITION'] == pending_job['PARTITION']]['NODELIST']
remaining_num_nodes = num_nodes - len(req_nodes)
non_resv_nodes = set(possible_nodes)
general_interfering_resvs = []
for _, resv in resvs.iterrows():
delta = set(resv['Nodes']).intersection(set(possible_nodes))
non_resv_nodes = non_resv_nodes - set(resv['Nodes'])
if delta:
general_interfering_resvs.append(resv)
if len(non_resv_nodes) < remaining_num_nodes:
interfering_resvs += general_interfering_resvs
return interfering_resvs
def suggest_other_qos(slurm_info, pending_job):
available_qos = slurm_info.available_qos(pending_job['USER'], pending_job['ACCOUNT'], pending_job['PARTITION'])
available_qos.remove(pending_job['QOS'])
return display_qos_suggestion(available_qos)
def display_qos_suggestion(available_qos):
return f"You may consider submitting with these other QOS: {', '.join(available_qos)}" if available_qos else ''
def identify_problems(slurm_info):
def inner(pending_job):
severity = SEVERITY['LOW']
problems = []
if pending_job['REASON'] in ['QOSMaxWallDurationPerJobLimit']:
qos = slurm_info.qos_df()[slurm_info.qos_df()['Name'] == pending_job['QOS']].iloc[0]
job_wall_time = pending_job['TIME_LIMIT']
severity = max(severity, SEVERITY['HIGH'])
problems.append([
f"This job will not run because its time limit exceeds the maximum time limit for jobs under the QOS {pending_job['QOS']}.",
f"QOS maximum time limit: {qos['MaxWall']}",
f"This job time limit: {job_wall_time}",
"You should cancel this job and resubmit with a lower wall clock time limit or use a different QOS with a higher allowed time limit.",
# TODO: suggest QOS with higher time if applicable
])
if pending_job['REASON'] in ['QOSMaxCpuPerJobLimit', 'QOSMaxNodePerJobLimit']:
qos = slurm_info.qos_df()[slurm_info.qos_df()['Name'] == pending_job['QOS']].iloc[0]
qos_resource_limit = parse_tres(qos['MaxTRES'])
qos_resource_limit_str = display_grp_tres(qos_resource_limit)
job_resources_requested = display_grp_tres(filter_keys(qos_resource_limit, parse_tres_queue_job(pending_job)))
severity = max(severity, SEVERITY['HIGH'])
problems.append([
f"This job will not run because it is requesting more resources than is allowed per job under the QOS {pending_job['QOS']}.",
f"QOS per job resource limit: {qos_resource_limit_str}",
f"This job is requesting: {job_resources_requested}",
"You should cancel this job and resubmit with lower resource requirements or use a different QOS.",
suggest_other_qos(slurm_info, pending_job)
])
if pending_job['REASON'] in ['QOSGrpNodeLimit', 'QOSGrpCpuLimit', 'QOSGrpGRES']:
qos_df = slurm_info.qos_df()
queue = slurm_info.squeue_df()
qos_df = qos_df[qos_df['Name'] == pending_job['QOS']]
qos_resource_limit = parse_tres(qos_df['GrpTRES'].values[0])
qos_resource_limit_str = display_grp_tres(parse_tres(qos_df['GrpTRES'].values[0]))
qos_running_jobs = queue[(queue['QOS'] == pending_job['QOS']) & (queue['STATE'] == 'RUNNING')]
qos_running_jobs_str = ', '.join(qos_running_jobs['JOBID'] + ' (' + qos_running_jobs.apply(lambda x: filter_keys(qos_resource_limit, parse_tres_queue_job(x)), axis=1).apply(display_grp_tres) + ')')
qos_resources_used = display_grp_tres(filter_keys(qos_resource_limit, sum_dicts(qos_running_jobs.apply(parse_tres_queue_job, axis=1))))
job_resources_requested = display_grp_tres(filter_keys(qos_resource_limit, parse_tres_queue_job(pending_job)))
available_qos = slurm_info.available_qos(pending_job['USER'], pending_job['ACCOUNT'], pending_job['PARTITION'])
available_qos.remove(pending_job['QOS'])
other_qos = f"\n You may consider submitting with these other QOS: {', '.join(available_qos)}" if available_qos else ''
severity = max(severity, SEVERITY['MEDIUM'])
problems.append([
f"This job is waiting until the QOS {pending_job['QOS']} has available resources.",
f"QOS resource limit: {qos_resource_limit_str}",
f"QOS currently using: {qos_resources_used}: {qos_running_jobs_str}",
f"This job is requesting: {job_resources_requested}",
suggest_other_qos(slurm_info, pending_job)
])
if pending_job['REASON'] in ['Priority', 'Resources'] or re.match("^ReqNodeNotAvail", pending_job['REASON']):
sprio_df = slurm_info.sprio_df()
resv_conflicts = check_resv_conflicts(pending_job, slurm_info.resv_df(), slurm_info.sinfo_df())
if resv_conflicts:
severity = max(severity, SEVERITY['HIGH'])
resvs = set([ (resv['ReservationName'], resv['StartTime'], resv['EndTime']) for resv in resv_conflicts ])
problems.append(f"""This job has a maximum time limit of {pending_job['TIME_LIMIT']}.
This job conflicts with the following reservations:\n""" +
'\n'.join([ f' - {resv[0]}: {resv[1]} to {resv[2]}' for resv in resvs ]) +
"""
This job will run AFTER the reservation.
Reservations are used for cluster maintenance.
If the reservation has not yet started, then you could decrease the wall-clock time for the job so it terminates before the reservation starts.""")
else:
severity = max(severity, SEVERITY['LOW'])
# pending_partition = queue[(queue['PARTITION'] == pending_job['PARTITION']) & (queue['STATE'] == 'PENDING')]
# pending_demand = display_grp_tres(sum_dicts(pending_partition.apply(parse_tres_queue_job, axis=1).values))
this_priority = sprio_df[sprio_df['JOBID'] == pending_job['JOBID_2']]['PRIORITY'].values[0]
higher_prio_jobs = sprio_df[
(sprio_df['PARTITION'] == pending_job['PARTITION']) & \
((sprio_df['PRIORITY'] > this_priority) | \
((sprio_df['PRIORITY'] == this_priority) & (sprio_df['JOBID'] < pending_job['JOBID'])))]
problems.append(f"""This job is scheduled to run after {higher_prio_jobs.shape[0]} higher priority jobs.
Estimated start time: {pending_job['START_TIME']}
To get scheduled sooner, you can try reducing wall clock time as appropriate.""")
return severity, problems
return inner
def display_queued_jobs(username, slurm_info, quiet):
df = slurm_info.squeue_df().copy()
df = df[df['USER'] == username]
df['PROBLEMS'] = df.apply(identify_problems(slurm_info), axis=1)
num_running_jobs = df[df['STATE'] == 'RUNNING'].shape[0]
num_pending_jobs = df[df['STATE'] == 'PENDING'].shape[0]
print(f"Currently {num_running_jobs} running {'job' if num_running_jobs == 1 else 'jobs'} and {num_pending_jobs} pending {'job' if num_pending_jobs == 1 else 'jobs'} (most recent job first):")
display_df = pd.DataFrame()
display_df['Job ID'] = df.apply(display_job_id, axis=1)
display_df['Name'] = df['NAME']
display_df['Account'] = df['ACCOUNT']
display_df['Nodes'] = df['NODES'] + 'x ' + df['PARTITION']
display_df['QOS'] = df['QOS']
display_df['Time'] = df['TIME']
display_df['State'] = df['STATE'].apply(color_state)
display_df['Reason'] = df['REASON'].apply(color_reason)
print(get_table(display_df))
display_problems(df, quiet)
def display_problems(df, quiet):
if not quiet:
problem_jobs = df[df['PROBLEMS'].apply(lambda p: len(p[1]) > 0)]
for _, job in problem_jobs.iterrows():
print('\n' + display_job_id(job) + ':')
severity, problems = job['PROBLEMS']
for problem in problems:
print(' - ' + '\n '.join([ p for p in problem if p ]) if type(problem) == list else problem)
def identify_problems_completed(slurm_info):
def inner(completed_job):
severity = SEVERITY['LOW']
problems = []
elapsed_time = parse_timelimit(completed_job['Elapsed'])
if (completed_job['State'] == 'COMPLETED') and elapsed_time < datetime.timedelta(minutes=5):
severity = max(severity, SEVERITY['MEDIUM'])
problems.append([
f"This job ran for a very short amount of time ({elapsed_time}). You may want to check that the output was correct or if it exited because of a problem."
])
return severity, problems
return inner
parser = argparse.ArgumentParser(description='Display pending job/queue info in a helpful way.')
parser.add_argument('-u', '--user', help='Set username to check (default is current user)', default=getpass.getuser())
parser.add_argument('-a', '--all-jobs', dest='all_jobs', default=False, action='store_true', help='Show current and past jobs for selected user')
parser.add_argument('-q', '--quiet', dest='quiet', default=False, action='store_true', help='Suppress job issue messages')
parser.add_argument('-S', '--start-time', dest='start_time', help='Filter for jobs created after specified start time', type=str, default=None)
parser.add_argument('-n', '--limit', dest='limit', type=int, default=8, help='Limit number of jobs in job history table (unlimited = -1, default = 8)')
parser.add_argument('--freeze', type=str, help='(debug) Freeze Slurm command outputs to a directory')
parser.add_argument('--load', type=str, help='(debug) Load results from a frozen Slurm output directory')
args = parser.parse_args()
slurm_info = SlurmInfo(args.load)
username = args.user
print('Showing results for user', username)
if args.freeze:
slurm_info.freeze(args.freeze, username, args.start_time)
if slurm_info.has_current_jobs(username) and (not args.all_jobs):
display_queued_jobs(username, slurm_info, args.quiet)
print()
elif (not args.all_jobs):
print('No running or queued jobs.')
try:
recent_jobs = slurm_info.get_recent_jobs(username, args.start_time, args.limit)
if recent_jobs.shape[0]:
recent_jobs['PROBLEMS'] = recent_jobs.apply(identify_problems_completed(slurm_info), axis=1)
recent_completed = recent_jobs[recent_jobs['State'] == 'COMPLETED'].sort_values(by='End', ascending=False).head(1)
has_problems = recent_completed[recent_completed['PROBLEMS'].apply(lambda problems: len(problems[1]) > 0)]
if args.all_jobs or (not slurm_info.has_current_jobs(username)):
display_recent_jobs(recent_jobs, args.quiet)
elif has_problems.shape[0]:
# just show the most recent one with the problem
display_recent_jobs(recent_completed, args.quiet)
except:
pass