Skip to content

Latest commit

 

History

History
89 lines (82 loc) · 3.37 KB

dtt.md

File metadata and controls

89 lines (82 loc) · 3.37 KB

Dependent Type Theory

Day 1 --- Computational Trinitarianism

  • Abstraction; Strictures, not affordances; proof relevance; identity.
  • Boolean, Heyting Algebras
  • Exercises
    1. Show that every Heyting Algebra is Distributive.
    2. Show that in a Heyting Algebra the following hold:
      • Weakening:
        • $$X \le X \vee Y$$
        • $$X \vee Y \le X$$
      • Contraction
        • $$X <= X \wedge Y$$
      • Exchange
        • $$X \wedge Y \le Y \wedge X$$
  • Scanned Notes:

Day 2 --- IPL and STT

  • Intuitionistic Propositional Logic / Simple Type Theory
  • Analytic vs Synthetic Judgement
  • Families of Types
  • Exercises NOTE(dbp 2015-06-28): I couldn't find any.
  • Scanned Notes:

Day 3 -- DTT

  • Families of Types
  • Functionality / Functorality
  • Dependenty Type Theory (DTT)
  • Exercises
    1. What does this proof of $$\ex a,b irrational s.t. a^b \in Q$$ actually say?

      Consider a = b = $$\sqrt{2}$$. Either $$\sqrt{2}^\sqrt{2}$$ is in Q or not. If it is, then we're done. Otherwise, let $$a = \sqrt{2}^\sqrt{2}$$ and $$b = \sqrt{2}$$. Then $$a^b = 2 \in Q$$. QED.

    2. NOTE(dbp 2015-06-28): I have an exercise relating to choosing z : Nat |- Seq z, with the prompt to write a program such that... And that's where it ends.

    3. Write $$EQ(n,m)$$ with rec_nat where the it should obey the following spec:

      EQ(0,0) = 1
      EQ(0,Succ _) = 0
      EQ(Succ _, 0) = 0
      EQ(Succ x, Succ y) = EQ(x,y)
      
    4. Write a proof term showing that for all x:Nat, EQ(x,x).

  • Scanned Notes:

Day 4 --- Proof Relevant Equality

  • Proof Relevant Equality
  • Identification Type
  • Exercises
    1. Define the following EQ relations (the first is given as an example):
      • $$EQ_{AxB} = EQ_A x EQ_B = \lambda x. \lambda y. EQ_A(fst x, fst y) x EQ_B(snd x, snd y)$$
      • $$EQ_{A+B} = EQ_{A} + EQ_{B} = ?$$
      • $$EQ_{\Sigma x:A. B} = ?$$
      • $$EQ_{\Pi x:A. B} = ?$
    2. Prove the following: $$\Pi x:A. \Sigma y:B. R(x,y) \rightarrow \Sigma f : A -> B. \Pi x:A R(x, y x)$$
  • Scanned Notes:

Day 5 --- Identification Types

  • Identification is an Equivalence Relation
  • Identification is an $$\infty$$-groupoi
  • Interval
  • Exercises
    1. NOTE(dbp 2015-06-28): I'm not totally sure what this exercise is. It has to do with $$ap_f$$ - I just have something boxed and the word "exercise" written below.
    2. Show groupoid laws by identification induction:
      • $$unit_L : refl(M) \dot \alpha =_{M=_AN} \alpha$$
      • $$unit_R : \alpha =_{M=_AN} \alpha \dot refl(N)$$
      • $$inv_L : \alpha^{-1}\alpha =_{N=_AN} refl(N)$$
      • $$inv_R : \alpha\alpha^{-1} =_{M=_AM} refl(M)$$
      • $$assoc : \alpa \dot (\beta \gamma) =_{M=P} (\alpha \beta) \gamma$$
    3. Show $$Id_{AxB}(M,N) \cong Id_A(fst M, fst N) \times Id_B(snd M, snd N)$$
    4. Prove the following implication (using happly): $$Id_{A \rightarrow B}(f,g) \rightarrow \Pi_{x:A} f(x) =_{B} g(x)$$
    5. Prove the following implication: $$ \Pi_{x:A} f(x) ={B} g(x) \rightarrow \Pi{x,y:A} x =_A y \rightarrow f(x) =_B g(y)$$
  • Scanned Notes: