-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathmodels.py
110 lines (90 loc) · 3.62 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
""" Componets of the model
"""
import torch.nn as nn
import torch
import torch.nn.functional as F
def xavier_init(m):
if type(m) == nn.Linear:
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
m.bias.data.fill_(0.0)
class GraphConvolution(nn.Module):
def __init__(self, in_features, out_features, bias=True):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_features))
nn.init.xavier_normal_(self.weight.data)
if self.bias is not None:
self.bias.data.fill_(0.0)
def forward(self, x, adj):
support = torch.mm(x, self.weight)
output = torch.sparse.mm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
class GCN_E(nn.Module):
def __init__(self, in_dim, hgcn_dim, dropout):
super().__init__()
self.gc1 = GraphConvolution(in_dim, hgcn_dim[0])
self.gc2 = GraphConvolution(hgcn_dim[0], hgcn_dim[1])
self.gc3 = GraphConvolution(hgcn_dim[1], hgcn_dim[2])
self.dropout = dropout
def forward(self, x, adj):
x = self.gc1(x, adj)
x = F.leaky_relu(x, 0.25)
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
x = F.leaky_relu(x, 0.25)
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc3(x, adj)
x = F.leaky_relu(x, 0.25)
return x
class Classifier_1(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.clf = nn.Sequential(nn.Linear(in_dim, out_dim))
self.clf.apply(xavier_init)
def forward(self, x):
x = self.clf(x)
return x
class VCDN(nn.Module):
def __init__(self, num_view, num_cls, hvcdn_dim):
super().__init__()
self.num_cls = num_cls
self.model = nn.Sequential(
nn.Linear(pow(num_cls, num_view), hvcdn_dim),
nn.LeakyReLU(0.25),
nn.Linear(hvcdn_dim, num_cls)
)
self.model.apply(xavier_init)
def forward(self, in_list):
num_view = len(in_list)
for i in range(num_view):
in_list[i] = torch.sigmoid(in_list[i])
x = torch.reshape(torch.matmul(in_list[0].unsqueeze(-1), in_list[1].unsqueeze(1)),(-1,pow(self.num_cls,2),1))
for i in range(2,num_view):
x = torch.reshape(torch.matmul(x, in_list[i].unsqueeze(1)),(-1,pow(self.num_cls,i+1),1))
vcdn_feat = torch.reshape(x, (-1,pow(self.num_cls,num_view)))
output = self.model(vcdn_feat)
return output
def init_model_dict(num_view, num_class, dim_list, dim_he_list, dim_hc, gcn_dopout=0.5):
model_dict = {}
for i in range(num_view):
model_dict["E{:}".format(i+1)] = GCN_E(dim_list[i], dim_he_list, gcn_dopout)
model_dict["C{:}".format(i+1)] = Classifier_1(dim_he_list[-1], num_class)
if num_view >= 2:
model_dict["C"] = VCDN(num_view, num_class, dim_hc)
return model_dict
def init_optim(num_view, model_dict, lr_e=1e-4, lr_c=1e-4):
optim_dict = {}
for i in range(num_view):
optim_dict["C{:}".format(i+1)] = torch.optim.Adam(
list(model_dict["E{:}".format(i+1)].parameters())+list(model_dict["C{:}".format(i+1)].parameters()),
lr=lr_e)
if num_view >= 2:
optim_dict["C"] = torch.optim.Adam(model_dict["C"].parameters(), lr=lr_c)
return optim_dict