-
Notifications
You must be signed in to change notification settings - Fork 10
/
LSTM_basic.py
133 lines (112 loc) · 4.8 KB
/
LSTM_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
'''
Accelerating Symbolic Regression with Deep Learning
By Tyler Hughes, Siddharth Buddhiraju and Rituraj
For CS 221, Fall 2017-2018
This file does simple tests on LSTMs with one or two, user-defined
datasets. Used for debugging and testing generalization of the model.
'''
import numpy as np
import tensorflow as tf
import sys
# set up training data
feature_vector_arr = [[1,0],
[0,1]]
equation_strings_arr = [['sin','(','x',')','<eoe>'],
['x','+','c','<eoe>']] # correct equation labels
#feature_vector_arr = [[1,0]] # single input to LSTM
#equation_strings_arr = [['sin','(','x','+','c',')']] # correct equation labels
N_feature = len(feature_vector_arr[0])
eq_dict = {'(':0,')':1,'x':2,'c':3,'sin':4,'+':5,'cos':6,'<eoe>':7} # id the equation components
reverse_dict = {a:b for b,a in eq_dict.iteritems()}
N_vocab = len(eq_dict)
N_train = len(equation_strings_arr)
N_steps = max([len(e) for e in equation_strings_arr])
LSTM_size = 10
# turn the equation into a one-hot representation
def get_one_hot(eq_string):
one_hot_list = []
for i in range(N_steps):
one_hot = np.zeros((N_vocab,1))
if len(eq_string) > i:
s = eq_string[i]
one_hot[eq_dict[s],0] = 1
one_hot_list.append(one_hot)
return one_hot_list
# turn the equation into a one-hot representation and reshape for TF
features = [np.reshape(np.array(f),(1,N_feature)) for f in feature_vector_arr]
eq_one_hot = [np.reshape(np.array(get_one_hot(e)),(1,N_steps,N_vocab)) for e in equation_strings_arr]
# input to the first LSTM cell (the feature vector)
feature = tf.placeholder(tf.float32,[1,N_feature])
# target out values from each LSTM cell
target = tf.placeholder(tf.float32,[1,N_steps,N_vocab])
# output weights and biases (to softmax)
Wo = tf.Variable(tf.random_normal([N_vocab,LSTM_size]))
bo = tf.Variable(tf.zeros([N_vocab,1]))
# output weights and biases (to softmax)
Wi = tf.Variable(tf.random_normal([LSTM_size,N_vocab]))
bi = tf.Variable(tf.zeros([LSTM_size,1]))
# output weights and biases (to softmax)
Wf = tf.Variable(tf.random_normal([N_feature,LSTM_size]))
bf = tf.Variable(tf.zeros([1,LSTM_size]))
# define the basic lstm cell
lstm_cell = tf.contrib.rnn.BasicLSTMCell(LSTM_size)
def predict(feature, lstm_cell):
# first output from feeding the feature vector
feature = tf.add(tf.matmul(feature,Wf),bf)
out, _ = tf.contrib.rnn.static_rnn(lstm_cell,[feature], dtype=tf.float32)
# apply first connected layer to output
out = tf.reshape(out,[LSTM_size,-1])
out = tf.add(tf.matmul(Wo,out),bo)
# apply softmax and get max entry
out = tf.nn.softmax(out,dim=0)
predict1 = tf.argmax(out)
out_list = [out]
for i in range(N_steps-1):
in_state = tf.add(tf.matmul(Wi,out),bi)
in_state = tf.reshape(in_state,[1,LSTM_size])
out, state = tf.contrib.rnn.static_rnn(lstm_cell,[in_state], dtype=tf.float32)
# apply first connected layer to output
out = tf.reshape(out,[LSTM_size,-1])
out = tf.add(tf.matmul(Wo,out),bo)
# apply softmax and get max entry
out = tf.nn.softmax(out,dim=0)
predict = tf.argmax(out)
out_list.append(out)
return out_list
def one_hot_to_eq_str(one_hot_list):
one_hot_list = one_hot_list[0] # need to get 0th element since only one training example in practice
N = len(one_hot_list)
equation = ''
for i in range(N):
prediction = np.argmax(one_hot_list[i])
eq_el = reverse_dict[prediction]
equation += eq_el
if eq_el == '<eoe>':
return equation
return equation
loss = tf.constant(0.0)
out_list = tf.reshape(predict(feature, lstm_cell),[1,N_steps,N_vocab])
loss = loss + tf.reduce_sum(tf.square(tf.abs(tf.subtract(out_list,target))))
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.01).minimize(loss)
N_epoch = 1000
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
losses = []
for i in range(N_epoch):
epoch_loss = 0.0
for m in range(N_train):
_, loss_calc, out_list_calc = sess.run([optimizer, loss, out_list], \
feed_dict={ feature:features[m],
target:eq_one_hot[m]})
epoch_loss += loss_calc
losses.append(epoch_loss)
sys.stdout.write("\repoch %s of %s. loss: %s" % (i,N_epoch,epoch_loss))
sys.stdout.flush()
print("\n")
def test_prediction(index):
p = sess.run(out_list,feed_dict={feature:features[index]})
eq_pred = one_hot_to_eq_str(p)
print("supplied feature vector for : %s" % (''.join(equation_strings_arr[index])))
print("predicted equation of : %s" % (eq_pred))
test_prediction(0)
test_prediction(1)