-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tensorflowckpt2pb.py
136 lines (119 loc) · 5.88 KB
/
Tensorflowckpt2pb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts checkpoint variables into Const ops in a standalone GraphDef file.
This script is designed to take a GraphDef proto, a SaverDef proto, and a set of
variable values stored in a checkpoint file, and output a GraphDef with all of
the variable ops converted into const ops containing the values of the
variables.
It's useful to do this when we need to load a single file in C++, especially in
environments like mobile or embedded where we may not have access to the
RestoreTensor ops and file loading calls that they rely on.
An example of command-line usage is:
bazel build tensorflow/python/tools:freeze_graph && \
bazel-bin/tensorflow/python/tools/freeze_graph \
--input_graph=some_graph_def.pb \
--input_checkpoint=model.ckpt-8361242 \
--output_graph=/tmp/frozen_graph.pb --output_node_names=softmax
You can also look at freeze_graph_test.py for an example of how to use it.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from google.protobuf import text_format
#from tensorflow.python.client import graph_util
from tensorflow.python.framework import graph_util
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("input_graph", "",
"""TensorFlow 'GraphDef' file to load.""")
tf.app.flags.DEFINE_string("input_saver", "",
"""TensorFlow saver file to load.""")
tf.app.flags.DEFINE_string("input_checkpoint", "",
"""TensorFlow variables file to load.""")
tf.app.flags.DEFINE_string("output_graph", "",
"""Output 'GraphDef' file name.""")
tf.app.flags.DEFINE_boolean("input_binary", False,
"""Whether the input files are in binary format.""")
tf.app.flags.DEFINE_string("output_node_names", "",
"""The name of the output nodes, comma separated.""")
tf.app.flags.DEFINE_string("restore_op_name", "save/restore_all",
"""The name of the master restore operator.""")
tf.app.flags.DEFINE_string("filename_tensor_name", "save/Const:0",
"""The name of the tensor holding the save path.""")
tf.app.flags.DEFINE_boolean("clear_devices", True,
"""Whether to remove device specifications.""")
tf.app.flags.DEFINE_string("initializer_nodes", "", "comma separated list of "
"initializer nodes to run before freezing.")
def freeze_graph(input_graph, input_saver, input_binary, input_checkpoint,
output_node_names, restore_op_name, filename_tensor_name,
output_graph, clear_devices, initializer_nodes):
"""Converts all variables in a graph and checkpoint into constants."""
if not tf.gfile.Exists(input_graph):
print("Input graph file '" + input_graph + "' does not exist!")
return -1
if input_saver and not tf.gfile.Exists(input_saver):
print("Input saver file '" + input_saver + "' does not exist!")
return -1
if not tf.gfile.Glob(input_checkpoint):
print("Input checkpoint '" + input_checkpoint + "' doesn't exist!")
return -1
if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1
input_graph_def = tf.GraphDef()
mode = "rb" if input_binary else "r"
with tf.gfile.FastGFile(input_graph, mode) as f:
if input_binary:
input_graph_def.ParseFromString(f.read())
else:
text_format.Merge(f.read(), input_graph_def)
# Remove all the explicit device specifications for this node. This helps to
# make the graph more portable.
if clear_devices:
for node in input_graph_def.node:
node.device = ""
_ = tf.import_graph_def(input_graph_def, name="")
with tf.Session() as sess:
if input_saver:
with tf.gfile.FastGFile(input_saver, mode) as f:
saver_def = tf.train.SaverDef()
if input_binary:
saver_def.ParseFromString(f.read())
else:
text_format.Merge(f.read(), saver_def)
saver = tf.train.Saver(saver_def=saver_def)
saver.restore(sess, input_checkpoint)
else:
sess.run([restore_op_name], {filename_tensor_name: input_checkpoint})
if initializer_nodes:
sess.run(initializer_nodes)
output_graph_def = graph_util.convert_variables_to_constants(
sess, input_graph_def, output_node_names.split(","))
out_node_name = []
for i in range(len(output_graph_def.outputs)):
output_name = net_model.outputs[i].name.split(':')[0]
tf.identity(net_model.outputs[i],output_name)
out_node_name.append(output_name)
print(out_node_name)
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
def main(unused_args):
freeze_graph(FLAGS.input_graph, FLAGS.input_saver, FLAGS.input_binary,
FLAGS.input_checkpoint, FLAGS.output_node_names,
FLAGS.restore_op_name, FLAGS.filename_tensor_name,
FLAGS.output_graph, FLAGS.clear_devices, FLAGS.initializer_nodes)
if __name__ == "__main__":
tf.app.run()