sahi predict --source image/file/or/folder --model_path path/to/model --model_config_path path/to/config
will perform sliced inference on default parameters and export the prediction visuals to runs/predict/exp folder.
You can specify additional sliced prediction parameters as:
sahi predict --slice_width 256 --slice_height 256 --overlap_height_ratio 0.1 --overlap_width_ratio 0.1 --model_confidence_threshold 0.25 --source image/file/or/folder --model_path path/to/model --model_config_path path/to/config
-
Specify detection framework as
--model_type mmdet
for MMDetection or--model_type yolov5
for YOLOv5, to match with your model weight -
Specify postprocess type as
--postprocess_type GREEDYNMM
or--postprocess_type NMS
to be applied over sliced predictions -
Specify postprocess match metric as
--postprocess_match_metric IOS
for intersection over smaller area or--postprocess_match_metric IOU
for intersection over union -
Specify postprocess match threshold as
--postprocess_match_threshold 0.5
-
Add
--postprocess_class_agnostic
argument to ignore category ids of the predictions during postprocess (merging/nms) -
If you want to export prediction pickles and cropped predictions add
--export_pickle
and--export_crop
arguments. If you want to change crop extension type, set it as--visual_export_format JPG
. -
If you want to export prediction visuals, add
--export_visual
argument. -
By default, scripts apply both standard and sliced prediction (multi-stage inference). If you don't want to perform sliced prediction add
--no_sliced_prediction
argument. If you don't want to perform standard prediction add--no_standard_prediction
argument. -
If you want to perform prediction using a COCO annotation file, provide COCO json path as add
--dataset_json_path dataset.json
and coco image folder as--source path/to/coco/image/folder
, predictions will be exported as a coco json file to runs/predict/exp/results.json. Then you can use coco_evaluation command to calculate COCO evaluation results or coco_error_analysis command to calculate detailed COCO error plots.
sahi predict-fiftyone --image_dir image/file/or/folder --dataset_json_path dataset.json --model_path path/to/model --model_config_path path/to/config
will perform sliced inference on default parameters and show the inference result on FiftyOne App.
You can specify additional all extra parameters of the sahi predict command.
You need to convert your predictions into COCO result json, sahi predict command can be used to create that.
sahi coco fiftyone --image_dir dir/to/images --dataset_json_path dataset.json cocoresult1.json cocoresult2.json
will open a FiftyOne app that visualizes the given dataset and 2 detection results.
Specify IOU threshold for FP/TP by --iou_threshold 0.5
argument
sahi coco slice --image_dir dir/to/images --dataset_json_path dataset.json
will slice the given images and COCO formatted annotations and export them to given output folder directory.
Specify slice height/width size as --slice_size 512
.
Specify slice overlap ratio for height/width size as --overlap_ratio 0.2
.
If you want to ignore images with annotations set it add --ignore_negative_samples
argument.
(In Windows be sure to open anaconda cmd prompt/windows cmd as admin
to be able to create symlinks properly.)
sahi coco yolov5 --image_dir dir/to/images --dataset_json_path dataset.json --train_split 0.9
will convert given coco dataset to yolov5 format and export to runs/coco2yolov5/exp folder.
You need to convert your predictions into COCO result json, sahi predict command can be used to create that.
sahi coco evaluate --dataset_json_path dataset.json --result_json_path result.json
will calculate coco evaluation and export them to given output folder directory.
If you want to specify mAP metric type, set it as --type bbox
or --type mask
.
If you want to also calculate classwise scores add --classwise
argument.
If you want to specify max detections, set it as --proposal_nums "[10 100 500]"
.
If you want to specify a psecific IOU threshold, set it as --iou_thrs 0.5
. Default includes 0.50:0.95
and 0.5
scores.
If you want to specify export directory, set it as --out_dir output/folder/directory
.
You need to convert your predictions into COCO result json, sahi predict command can be used to create that.
sahi coco analyse --dataset_json_path dataset.json --result_json_path result.json --out_dir output/directory
will calculate coco error plots and export them to given output folder directory.
If you want to specify mAP result type, set it as --type bbox
or --type mask
.
If you want to export extra mAP bar plots and annotation area stats add --extraplots
argument.
If you want to specify area regions, set it as --areas "[1024 9216 10000000000]"
.
All scripts can be downloaded from scripts directory and modified by your needs. After installing sahi
by pip, all scripts can be called from any directory as:
python script_name.py