-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathspatial_mixing_layer_differentiable_inference.py
166 lines (143 loc) · 8.7 KB
/
spatial_mixing_layer_differentiable_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import sys
import time
import socket
import pickle
from diffpiso import *
from diffpiso.networks import initialise_fullyconv_network
from diffpiso.losses import *
base_path = '../learnedTurbulenceModelling_data/spatialMixingLayer/' # set base directory where dataset is located/ simulation will be stored
starting_frame = 0
timesteps = 2500
learning_dir = '' # set directory where model is stored
model_id = '' # set model number (id scheme in learning: EEEEEEiXXXXXX with E as epoch number and X as iteration number)
def neural_network_wrapper(neural_network, input, fluid, physical_parameters, simulation_parameters, loss_buffer_width, buffer_width):
sponge_start = int(simulation_parameters['HRres'][1] * simulation_parameters['sponge_ratio']) // simulation_parameters['dx_ratio']
NN_in = input[:, :, :sponge_start, :]
NN_out = tf.pad(neural_network(NN_in), ((0, 0), (0, 0), (0, fluid.resolution[1] - sponge_start), (0, 0)))
return NN_out
physical_parameters = {'average_velocity': 1,
'velocity_difference': 1,
'inlet_profile_sharpness': 2,
'viscosity': .002}
simulation_parameters = {'HRres': [64,64*4], # [512,512*4],
'dx_ratio': 1, # 8,
'differentiation_scheme': 'central_difference_new',
'dt': .05,
'dt_ratio': 1, # 8,
'box': box[0:64,0:64*4],
'sponge_ratio': .875,
'relative_sponge_max': 20}
training_dict = {'step_count': 1,
'grad_stop': 0,
'artificial_batch': 1,
'epochs': 5,
'dataset': base_path+'/sml_HR_512-2048_dx8_dt8_pert0.082-0.018/',
'dataset_characteristics': [(0.082,0.018)],
'start_frame': 8010,
'frame_count_training': 27000,
'frame_count_validation': 4900,
'perturb_inlet': True,
'pressure_included': True,
'network_initialiser': initialise_fullyconv_network,
'padding': 'VALID',
'load_model_path': base_path+learning_dir+'/model_epoch_'+model_id+'.ckpt',
'loss_functions': [L2_field_loss],
'loss_factor': [1],
'HR_buffer_width': [[0, 0], [0, 0]],
'data_shuffling_seeds': None,
'start_first_epoch_at': 0,
'learning_rate': 8e-6,
'lr_decay_fun': lambda l: l*.8,
'store_interm_ckpts': 200,
'staggered_formulation': False
}
buffer_width = [[i // simulation_parameters['dx_ratio'] for i in j] for j in training_dict['HR_buffer_width']]
sponge_start = int(simulation_parameters['HRres'][1] * simulation_parameters['sponge_ratio']) // simulation_parameters['dx_ratio'] # //2
solver_precision = 1e-8
domain, sim_physics, pressure_solver, velocity_placeholder, velocity, pressure_placeholder, pressure, viscosity_field, bc_placeholders, bcx= \
spatialMixingLayer_setup(simulation_parameters, solver_precision, physical_parameters, 1)
# NN DEFINITION -------------------------------------------------------------------------------------------------
if (training_dict['load_model_path']is None):
load_model_path = base_path + '/model_epoch_'+str(training_dict['epochs']-1).zfill(6)+'.ckpt'
else:
load_model_path = training_dict['load_model_path']
print('LOAD MODEL PATH',load_model_path)
assert training_dict['network_initialiser'] is not None
neural_network, weights, loss_buffer_width = \
training_dict['network_initialiser'](buffer_width=buffer_width, padding=training_dict['padding'], restore_shape=True)
saver = tf.train.Saver(weights)
dirichlet_placeholder_update = lambda dv, tf_pl: update_dirichlet_values(dv,((False, False), (True, False)),tf_pl)
velocity_all_steps, pressure_all_steps, nn_all_steps, velnew, pnew, NN_out,warn, velocity_all_arrays, pressure_all_arrays = \
run_piso_steps(velocity, pressure, domain, physical_parameters, simulation_parameters, training_dict, neural_network,neural_network_wrapper,
sim_physics, viscosity_field, bcx, bc_placeholders,
dirichlet_placeholder_update=dirichlet_placeholder_update, loss_buffer_width=loss_buffer_width)
velnew_data = velnew.staggered_tensor()
pnew_data = pnew.data
residual_force_data = NN_out
def boundary_perturbation_fun_new(shape,time):
return boundary_perturbation_fun(domain, physical_parameters['average_velocity'], shape, time, training_dict['dataset_characteristics'][0])
tf.Graph.finalize(tf.get_default_graph())
# SIMULATION RUN -------------------------------------------------------------------------------------------------
performance = []
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True
with tf.Session(config=session_config) as sess:
if load_model_path is not None and training_dict['network_initialiser'] is not None:
print('LOAD MODEL PATH', load_model_path)
saver.restore(sess, load_model_path.replace('//','/'))
sub_path = create_base_dir(base_path+learning_dir, '/start_' + str(starting_frame).zfill(6) + '_'+model_id+
'_pert'+str(training_dict['dataset_characteristics'][0][0])+'-'+str(training_dict['dataset_characteristics'][0][1])+'_')
os.mkdir(sub_path+'/plots')
initial_vel = np.load(training_dict['dataset'] + 'velocity_' + str(starting_frame).zfill(6) + '.npz')['arr_0']
initial_pre = np.load(training_dict['dataset'] + 'pressure_' + str(starting_frame).zfill(6) + '.npz')['arr_0']
vel_np = StaggeredGrid(initial_vel, velocity.box).at(velocity)
p_np = CenteredGrid(initial_pre, pressure.box).at(pressure)
np.savez(sub_path + '/velocity_' + str(0).zfill(6), vel_np.staggered_tensor())
np.savez(sub_path + '/pressure_' + str(0).zfill(6), p_np.data)
if residual_force_data is not None:
np.savez(sub_path + '/nn_forcing_' + str(0).zfill(6), np.zeros_like(vel_np.staggered_tensor()))
for i in range(1,timesteps):
# BOUNDARY CONDITION - PERTURBATION -----------------------------------------------------------------------
if training_dict['perturb_inlet'] == True:
boundary_perturbation = boundary_perturbation_fun_new(bc_placeholders.shape, simulation_parameters['dt']*starting_frame+
simulation_parameters['dt']*simulation_parameters['dt_ratio']*i)
else:
boundary_perturbation = np.zeros(bc_placeholders.shape)
s = time.time()
vel_out, p_out, nn_out = sess.run([velnew_data, pnew_data, residual_force_data],
feed_dict={velocity_placeholder: vel_np.staggered_tensor(),
pressure_placeholder: p_np.data,
bc_placeholders: boundary_perturbation})
f = time.time()
performance.append(f-s)
np.savez(sub_path + '/velocity_' + str(i).zfill(6), vel_out)
np.savez(sub_path + '/pressure_' + str(i).zfill(6), p_out)
if residual_force_data is not None:
np.savez(sub_path + '/nn_forcing_' + str(i).zfill(6), nn_out)
if i%50==0:
plt.figure(figsize=(8,12))
plt.subplot(5,1,1)
plt.title("v velocity")
plt.imshow(vel_out[0,...,0])
plt.colorbar()
plt.subplot(5,1,2)
plt.title("u velocity")
plt.imshow(vel_out[0,...,1])
plt.colorbar()
plt.subplot(5,1,3)
plt.title("p pressure")
plt.imshow(p_out[0,...,0])
plt.colorbar()
plt.subplot(5,1,4)
plt.title("nn forcing y")
plt.imshow(nn_out[0,...,0])
plt.colorbar()
plt.subplot(5,1,5)
plt.title("nn forcing x")
plt.imshow(nn_out[0,...,1])
plt.colorbar()
plt.savefig(sub_path+'/plots/plt_'+str(i))
plt.close()
vel_np = StaggeredGrid(vel_out, velocity.box)
p_np = CenteredGrid(p_out, pressure.box)
np.savez(sub_path+'/performance_'+socket.gethostname(), np.array(performance))