-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathDfpNet.py
118 lines (102 loc) · 5.63 KB
/
DfpNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
################
#
# Deep Flow Prediction - N. Thuerey, K. Weissenov, H. Mehrotra, N. Mainali, L. Prantl, X. Hu (TUM)
#
# CNN setup and data normalization
#
################
import torch
import torch.nn as nn
import torch.nn.functional as F
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def blockUNet(in_c, out_c, name, transposed=False, bn=True, relu=True, size=4, pad=1, dropout=0.):
block = nn.Sequential()
if relu:
block.add_module('%s_relu' % name, nn.ReLU(inplace=True))
else:
block.add_module('%s_leakyrelu' % name, nn.LeakyReLU(0.2, inplace=True))
if not transposed:
block.add_module('%s_conv' % name, nn.Conv2d(in_c, out_c, kernel_size=size, stride=2, padding=pad, bias=True))
else:
#block.add_module('%s_upsam' % name, nn.Upsample(scale_factor=2))
block.add_module('%s_upsam' % name, nn.Upsample(scale_factor=2, mode='bilinear'))
# reduce kernel size by one for the upsampling (ie decoder part)
block.add_module('%s_tconv' % name, nn.Conv2d(in_c, out_c, kernel_size=(size-1), stride=1, padding=pad, bias=True))
if bn:
block.add_module('%s_bn' % name, nn.BatchNorm2d(out_c))
if dropout>0.:
block.add_module('%s_dropout' % name, nn.Dropout2d( dropout, inplace=True))
return block
# generator model
class TurbNetG(nn.Module):
def __init__(self, channelExponent=6, dropout=0.):
super(TurbNetG, self).__init__()
channels = int(2 ** channelExponent + 0.5)
self.layer1 = nn.Sequential()
#self.layer1.add_module('layer1_conv', nn.Conv2d(3, channels, 4, 2, 1, bias=True))
self.layer1.add_module('layer1_conv', nn.Conv2d(12, channels, 4, 2, 1, bias=True))
self.layer2 = blockUNet(channels , channels*2, 'layer2', transposed=False, bn=True, relu=False, dropout=dropout )
self.layer2b= blockUNet(channels*2, channels*2, 'layer2b',transposed=False, bn=True, relu=False, dropout=dropout )
self.layer3 = blockUNet(channels*2, channels*4, 'layer3', transposed=False, bn=True, relu=False, dropout=dropout )
self.layer4 = blockUNet(channels*4, channels*8, 'layer4', transposed=False, bn=True, relu=False, dropout=dropout , size=2,pad=0)
self.layer5 = blockUNet(channels*8, channels*8, 'layer5', transposed=False, bn=True, relu=False, dropout=dropout , size=2,pad=0)
self.layer6 = blockUNet(channels*8, channels*8, 'layer6', transposed=False, bn=False, relu=False, dropout=dropout , size=2,pad=0)
# note, kernel size is internally reduced by one now
self.dlayer6 = blockUNet(channels*8, channels*8, 'dlayer6', transposed=True, bn=True, relu=True, dropout=dropout , size=2,pad=0)
self.dlayer5 = blockUNet(channels*16,channels*8, 'dlayer5', transposed=True, bn=True, relu=True, dropout=dropout , size=2,pad=0)
self.dlayer4 = blockUNet(channels*16,channels*4, 'dlayer4', transposed=True, bn=True, relu=True, dropout=dropout )
self.dlayer3 = blockUNet(channels*8, channels*2, 'dlayer3', transposed=True, bn=True, relu=True, dropout=dropout )
self.dlayer2b= blockUNet(channels*4, channels*2, 'dlayer2b',transposed=True, bn=True, relu=True, dropout=dropout )
self.dlayer2 = blockUNet(channels*4, channels , 'dlayer2', transposed=True, bn=True, relu=True, dropout=dropout )
self.dlayer1 = nn.Sequential()
self.dlayer1.add_module('dlayer1_relu', nn.ReLU(inplace=True))
#self.dlayer1.add_module('dlayer1_tconv', nn.ConvTranspose2d(channels*2, 3, 4, 2, 1, bias=True))
self.dlayer1.add_module('dlayer1_tconv', nn.ConvTranspose2d(channels*2, 4, 4, 2, 1, bias=True))
def forward(self, x):
out1 = self.layer1(x)
out2 = self.layer2(out1)
out2b= self.layer2b(out2)
out3 = self.layer3(out2b)
out4 = self.layer4(out3)
out5 = self.layer5(out4)
out6 = self.layer6(out5)
dout6 = self.dlayer6(out6)
dout6_out5 = torch.cat([dout6, out5], 1)
dout5 = self.dlayer5(dout6_out5)
dout5_out4 = torch.cat([dout5, out4], 1)
dout4 = self.dlayer4(dout5_out4)
dout4_out3 = torch.cat([dout4, out3], 1)
dout3 = self.dlayer3(dout4_out3)
dout3_out2b = torch.cat([dout3, out2b], 1)
dout2b = self.dlayer2b(dout3_out2b)
dout2b_out2 = torch.cat([dout2b, out2], 1)
dout2 = self.dlayer2(dout2b_out2)
dout2_out1 = torch.cat([dout2, out1], 1)
dout1 = self.dlayer1(dout2_out1)
return dout1
# discriminator (only for adversarial training, currently unused)
class TurbNetD(nn.Module):
def __init__(self, in_channels1, in_channels2,ch=64):
super(TurbNetD, self).__init__()
self.c0 = nn.Conv2d(in_channels1 + in_channels2, ch, 4, stride=2, padding=2)
self.c1 = nn.Conv2d(ch , ch*2, 4, stride=2, padding=2)
self.c2 = nn.Conv2d(ch*2, ch*4, 4, stride=2, padding=2)
self.c3 = nn.Conv2d(ch*4, ch*8, 4, stride=2, padding=2)
self.c4 = nn.Conv2d(ch*8, 1 , 4, stride=2, padding=2)
self.bnc1 = nn.BatchNorm2d(ch*2)
self.bnc2 = nn.BatchNorm2d(ch*4)
self.bnc3 = nn.BatchNorm2d(ch*8)
def forward(self, x1, x2):
h = self.c0(torch.cat((x1, x2),1))
h = self.bnc1(self.c1(F.leaky_relu(h, negative_slope=0.2)))
h = self.bnc2(self.c2(F.leaky_relu(h, negative_slope=0.2)))
h = self.bnc3(self.c3(F.leaky_relu(h, negative_slope=0.2)))
h = self.c4(F.leaky_relu(h, negative_slope=0.2))
h = F.sigmoid(h)
return h