diff --git a/phi/field/_resample.py b/phi/field/_resample.py index ff59fbb8e..3d12d0501 100644 --- a/phi/field/_resample.py +++ b/phi/field/_resample.py @@ -364,7 +364,7 @@ def _shift_resample(self: Field, resolution: Shape, bounds: Box, threshold=1e-5, def centroid_to_faces(u: Field, boundary: Extrapolation, order=2, upwind: Field = None, ignore_skew=False, gradient: Field = None): assert isinstance(upwind, Field) or upwind is None, f"upwind must be a Field but got {type(upwind)}" - if u.mesh._nb in u.values.shape: + if u.mesh.face_shape.dual in u.values.shape: return u.values neighbor_val = u.mesh.pad_boundary(u.values, mode=u.boundary) upwind = upwind.at_faces(extrapolation.NONE, order=2, upwind=None) if upwind is not None else None @@ -387,13 +387,13 @@ def centroid_to_faces(u: Field, boundary: Extrapolation, order=2, upwind: Field relative_face_distance = slice_off_constant_faces(u.mesh.relative_face_distance, u.mesh.boundary_faces, boundary) return (1 - relative_face_distance) * u.values + relative_face_distance * neighbor_val else: # skew correction - nb_center = math.replace_dims(u.mesh.center, 'cells', u.mesh._nb) + nb_center = math.replace_dims(u.mesh.center, 'cells', u.mesh.face_shape.dual) cell_deltas = math.pairwise_distances(u.mesh.center, format=u.mesh.cell_connectivity, default=None) # x_N - x_P face_distance = nb_center - u.mesh.face_centers[u.mesh.interior_faces] # x_N - x_f # face_distance = u.mesh.face_centers[u.mesh.interior_faces] - u.mesh.center # x_f - x_P normals = u.mesh.face_normals[u.mesh.interior_faces] w_interior = (face_distance.vector @ normals.vector) / (cell_deltas.vector @ normals.vector) # n·(x_N - x_f) / n·(x_N - x_P) - w = math.concat([w_interior, 0 * u.mesh.boundary_connectivity], u.mesh._nb) + w = math.concat([w_interior, 0 * u.mesh.boundary_connectivity], u.mesh.face_shape.dual) w = slice_off_constant_faces(w, u.mesh.boundary_faces, boundary) # first padding, then slicing is inefficient, but usually we don't slice anything off (boundary=none) # w = u.mesh.pad_boundary(w_interior, {k: s for k, s in u.mesh.boundary_faces.items() if not boundary.determines_boundary_values(k)}, boundary) this is only for vectors # b0 = math.tensor_like(slice_off_constant_faces(u.mesh.connectivity, u.mesh.boundary_faces, boundary), 0) diff --git a/phi/geom/_mesh.py b/phi/geom/_mesh.py index c64a3f9da..2f0b87f5e 100644 --- a/phi/geom/_mesh.py +++ b/phi/geom/_mesh.py @@ -1,134 +1,142 @@ import os import warnings +from dataclasses import dataclass +from functools import cached_property from numbers import Number from typing import Dict, List, Sequence, Union, Any, Tuple, Optional import numpy as np from scipy.sparse import csr_matrix, coo_matrix -from phiml.math import to_format, is_sparse, non_channel, non_batch, batch, pack_dims, unstack, tensor, si2d +from phiml.math import to_format, is_sparse, non_channel, non_batch, batch, pack_dims, unstack, tensor, si2d, non_dual, nonzero, stored_indices, stored_values, scatter, \ + find_closest, sqrt, where, vec_normalize, argmax, broadcast, to_int32, cross_product, zeros, random_normal, EMPTY_SHAPE, meshgrid, mean, reshaped_numpy, range_tensor, convolve, \ + assert_close, shift, pad, extrapolation, NUMPY, sum as sum_, with_diagonal, flatten, ones_like, dim_mask +from phiml.math._magic_ops import getitem_dataclass from phiml.math._sparse import CompactSparseTensor -from phiml.math.extrapolation import as_extrapolation +from phiml.math.extrapolation import as_extrapolation, PERIODIC from phiml.math.magic import slicing_dict +from . import bounding_box from ._functions import plane_sgn_dist from ._geom import Geometry, Point, scale, NoGeometry from ._box import Box, BaseBox from ._graph import Graph, graph -from .. import math from ..math import Tensor, Shape, channel, shape, instance, dual, rename_dims, expand, spatial, wrap, sparse_tensor, stack, vec_length, tensor_like, \ pairwise_distances, concat, Extrapolation -class Mesh(Geometry): - """ - Unstructured mesh. - Use `phi.geom.mesh()` or `phi.geom.mesh_from_numpy()` to construct a mesh manually or `phi.geom.load_su2()` to load one from a file. - """ - - def __init__(self, +class _MeshType(type): + """Metaclass containing the user-friendly (legacy) Mesh constructor.""" + def __call__(cls, vertices: Union[Geometry, Tensor], elements: Tensor, element_rank: int, boundaries: Dict[str, Dict[str, slice]], - center: Tensor, - volume: Tensor, - normals: Optional[Tensor], - face_centers: Optional[Tensor], - face_normals: Optional[Tensor], - face_areas: Optional[Tensor], - face_vertices: Optional[Tensor], - vertex_normals: Optional[Tensor], - vertex_connectivity: Optional[Tensor], - element_connectivity: Optional[Tensor], - max_cell_walk: int = None): - """ - Args: - vertices: Vertex positions, shape (vertices:i, vector:c) - elements: Sparse `Tensor` listing ordered vertex indices per cell. (cells, ~vertices). - The vertex count is equal to the number of elements per row. - face_vertices: (cells, ~cells, face_vertices) - """ - assert elements.dtype.kind == int, f"elements must be integer lists but got dtype {elements.dtype}" - assert isinstance(center, Tensor), f"center must be a Tensor" + max_cell_walk: int = None, + variables=('vertices',), + values=()): + if spatial(elements): + assert elements.dtype.kind == int, f"elements listing vertices must be integer lists but got dtype {elements.dtype}" + else: + assert elements.dtype.kind == bool, f"element matrices must be of type bool but got {elements.dtype}" if not isinstance(vertices, Geometry): vertices = Point(vertices) - self._vertices = vertices - self._elements = elements - self._element_rank = element_rank - self._boundaries = boundaries - self._center = center - self._volume = volume - self._face_centers = face_centers - self._face_normals = face_normals - self._face_areas = face_areas - if self._face_areas is not None: - assert set(face_areas.shape.names) == set((instance(elements) & dual).names), f"face_areas must have matching primal and dual dims matching elements {instance(elements)} but got {face_areas.shape}" - self._face_vertices = face_vertices - assert normals is None or (isinstance(normals, Tensor) and instance(center) in normals) - self._normals = normals - if vertex_connectivity is None and isinstance(vertices, Graph): - self._vertex_connectivity = vertices.connectivity - else: - assert vertex_connectivity is None or (isinstance(vertex_connectivity, Tensor) and instance(self._vertices) in vertex_connectivity.shape), f"Illegal vertex connectivity: {vertex_connectivity}" - self._vertex_connectivity = vertex_connectivity - assert vertex_normals is None or (dual(vertex_normals).rank == 1 and instance(vertex_normals).rank == 0) - self._vertex_normals = vertex_normals - assert element_connectivity is None or isinstance(element_connectivity, Tensor), f"element_connectivity must be a Tensor" - self._element_connectivity = element_connectivity - if face_areas is not None or face_centers is not None or face_normals is not None: - cell_deltas = pairwise_distances(self.center, format=self.cell_connectivity) - cell_distances = math.vec_length(cell_deltas) - neighbors_dim = dual(face_areas) - assert (cell_distances > 0).all, f"All cells must have distance > 0 but found 0 distance at {math.nonzero(cell_distances == 0)}" - face_distances = math.vec_length(self.face_centers[self.interior_faces] - self.center) - self._relative_face_distance = math.concat([face_distances / cell_distances, self.boundary_connectivity], neighbors_dim) - boundary_deltas = (self.face_centers - self.center)[self.all_boundary_faces] - assert (math.vec_length(boundary_deltas) > 0).all, f"All boundary faces must be separated from the cell centers but 0 distance at the following {channel(math.stored_indices(boundary_deltas)).item_names[0]}:\n{math.nonzero(math.vec_length(boundary_deltas) == 0):full}" - self._neighbor_offsets = math.concat([cell_deltas, boundary_deltas], neighbors_dim) - else: - self._relative_face_distance = None - self._neighbor_offsets = None if max_cell_walk is None: max_cell_walk = 2 if instance(elements).volume > 1 else 1 - self._max_cell_walk = max_cell_walk + result = cls.__new__(cls, vertices, elements, element_rank, boundaries, max_cell_walk, variables, values) + result.__init__(vertices, elements, element_rank, boundaries, max_cell_walk, variables, values) # also calls __post_init__() + return result - def __variable_attrs__(self): - return '_vertices', '_elements', '_center', '_volume', '_face_centers', '_face_normals', '_face_areas', '_face_vertices', '_normals', '_vertex_connectivity', '_vertex_normals', '_element_connectivity', '_relative_face_distance', '_neighbor_offsets' - def __value_attrs__(self): - return '_vertices', +@dataclass(frozen=True) +class Mesh(Geometry, metaclass=_MeshType): + """ + Unstructured mesh, consisting of vertices and elements. + + Use `phi.geom.mesh()` or `phi.geom.mesh_from_numpy()` to construct a mesh manually or `phi.geom.load_su2()` to load one from a file. + """ - @property + vertices: Geometry + """ Vertices are represented by a `Geometry` instance with an instance dim. """ + elements: Tensor + """ elements: Sparse `Tensor` listing ordered vertex indices per element (solid or surface element, depending on `element_rank`). + Must have one instance dim listing the elements and the corresponding dual dim to `vertices`. + The vertex count of an element is equal to the number of elements in that row (i.e. summing the dual dim). """ + element_rank: int + """The spatial rank of the elements. Solid elements have the same as the ambient space, faces one less.""" + boundaries: Dict[str, Dict[str, slice]] + """Slices to retrieve boundary face values.""" + periodic: Sequence[str] + """List of axis names that are periodic. Periodic boundaries must be named as axis- and axis+. For example `['x']` will connect the boundaries x- and x+.""" + face_format: str = 'csc' + """Sparse matrix format for storing quantities that depend on a pair of neighboring elements, e.g. `face_area`, `face_normal`, `face_center`.""" + max_cell_walk: int = None + + variable_attrs: Tuple[str, ...] = ('vertices',) + value_attrs: Tuple[str, ...] = () + + @cached_property def shape(self) -> Shape: - return shape(self._elements).non_dual & channel(self._vertices) & batch(self._vertices) + return non_dual(self.elements) & channel(self.vertices) & batch(self.vertices) - @property + @cached_property def cell_count(self): - return instance(self._elements).size + return instance(self.elements).size - @property + @cached_property def center(self) -> Tensor: - return self._center - - @property + if self.element_rank == self.spatial_rank: # Compute volumetric center from faces + return sum_(self.face_centers * self.face_areas, dual) / sum_(self.face_areas, dual) + else: # approximate center from vertices + return self._vertex_mean + + @cached_property + def _vertex_mean(self): + """Mean vertex location per element.""" + vertex_count = sum_(self.elements, instance(self.vertices).as_dual()) + return (self.elements @ self.vertices.center) / vertex_count + + @cached_property def face_centers(self) -> Tensor: - return self._face_centers + return self._faces['center'] @property def face_areas(self) -> Tensor: - return self._face_areas + return self._faces['area'] - @property + @cached_property def face_normals(self) -> Tensor: - return self._face_normals + if self.element_rank == self.spatial_rank: # this cannot depend on element centers because that depends on the normals. + normals = self._faces['normal'] + face_centers = self._faces['center'] + normals_out = normals.vector * (face_centers - self._vertex_mean).vector > 0 + normals = where(normals_out, normals, -normals) + return normals + raise NotImplementedError + + @cached_property + def _faces(self) -> Dict[str, Tensor]: + if self.element_rank == 2: + centers, normals, areas, boundary_slices, vertex_connectivity = build_faces_2d(self.vertices.center, self.elements, self.boundaries, self.periodic, self._vertex_mean, self.face_format) + return { + 'center': centers, + 'normal': normals, + 'area': areas, + 'boundary_slices': boundary_slices, + 'vertex_connectivity': vertex_connectivity, + } + return None @property def face_shape(self) -> Shape: - return instance(self._elements) & dual + return instance(self.elements) & dual @property def sets(self): - return {'center': non_batch(self)-'vector', 'vertex': instance(self._vertices), '~vertex': dual(self._elements)} + return { + 'center': non_batch(self)-'vector', + 'vertex': instance(self.vertices), + '~vertex': dual(self.elements) + } def get_points(self, set_key: str) -> Tensor: if set_key == 'vertex': @@ -149,24 +157,20 @@ def boundary_elements(self) -> Dict[str, Dict[str, slice]]: @property def boundary_faces(self) -> Dict[str, Dict[str, slice]]: - return self._boundaries - - @property - def _nb(self): - return dual(self._face_areas) + return self._faces['boundary_slices'] @property def all_boundary_faces(self) -> Dict[str, slice]: - return {self._nb: slice(instance(self).volume, None)} + return {self.face_shape.dual.name: slice(instance(self).volume, None)} @property def interior_faces(self) -> Dict[str, slice]: - return {self._nb: slice(0, instance(self).volume)} + return {self.face_shape.dual.name: slice(0, instance(self).volume)} def pad_boundary(self, value: Tensor, widths: Dict[str, Dict[str, slice]] = None, mode: Extrapolation or Tensor or Number = 0, **kwargs) -> Tensor: mode = as_extrapolation(mode) - if self._nb not in value.shape: - value = math.replace_dims(value, instance, self._nb) + if self.face_shape.dual.name not in value.shape: + value = rename_dims(value, instance, self.face_shape.dual) else: raise NotImplementedError if widths is None: @@ -186,7 +190,7 @@ def pad_boundary(self, value: Tensor, widths: Dict[str, Dict[str, slice]] = None ordered_pieces = [values[i] for i in perm] return concat(ordered_pieces, dim, expand_values=True) - @property + @cached_property def cell_connectivity(self) -> Tensor: """ Returns a bool-like matrix whose non-zero entries denote connected elements. @@ -197,43 +201,43 @@ def cell_connectivity(self) -> Tensor: """ return self.connectivity[self.interior_faces] - @property + @cached_property def boundary_connectivity(self) -> Tensor: return self.connectivity[self.all_boundary_faces] - @property - def connectivity(self) -> Tensor: - if self._element_connectivity is not None: - return self._element_connectivity - if self._face_areas is None and self._face_normals is None and self._face_centers is None: - return None - if is_sparse(self._face_areas): - return tensor_like(self._face_areas, True) - else: - return self._face_areas > 0 - - @property + @cached_property def distance_matrix(self): - return math.vec_length(math.pairwise_distances(self.center, edges=self.cell_connectivity, format='as edges', default=None)) + return vec_length(pairwise_distances(self.center, edges=self.cell_connectivity, format='as edges', default=None)) def faces_to_vertices(self, values: Tensor, reduce=sum): - v = math.stored_values(values, invalid='keep') # ToDo replace this once PhiML has support for dense instance dims and sparse scatter - i = math.stored_values(self._face_vertices, invalid='keep') + v = stored_values(values, invalid='keep') # ToDo replace this once PhiML has support for dense instance dims and sparse scatter + i = stored_values(self.face_vertices, invalid='keep') i = rename_dims(i, channel, instance) - out_shape = non_channel(self._vertices) & shape(values).without(self.face_shape) - return math.scatter(out_shape, i, v, mode=reduce, outside_handling='undefined') + out_shape = non_channel(self.vertices) & shape(values).without(self.face_shape) + return scatter(out_shape, i, v, mode=reduce, outside_handling='undefined') - @property + @cached_property + def _cell_deltas(self): + bounds = bounding_box(self.vertices) + is_periodic = dim_mask(self.vector.item_names, self.periodic) + return pairwise_distances(self.center, format=self.cell_connectivity, periodic=is_periodic, domain=(bounds.lower, bounds.upper)) + + @cached_property def relative_face_distance(self): """|face_center - center| / |neighbor_center - center|""" - return self._relative_face_distance + cell_distances = vec_length(self._cell_deltas) + assert (cell_distances > 0).all, f"All cells must have distance > 0 but found 0 distance at {nonzero(cell_distances == 0)}" + face_distances = vec_length(self.face_centers[self.interior_faces] - self.center) + return concat([face_distances / cell_distances, self.boundary_connectivity], self.face_shape.dual) - @property + @cached_property def neighbor_offsets(self): """Returns shift vector to neighbor centroids and boundary faces.""" - return self._neighbor_offsets + boundary_deltas = (self.face_centers - self.center)[self.all_boundary_faces] + assert (vec_length(boundary_deltas) > 0).all, f"All boundary faces must be separated from the cell centers but 0 distance at the following {channel(stored_indices(boundary_deltas)).item_names[0]}:\n{nonzero(vec_length(boundary_deltas) == 0):full}" + return concat([self._cell_deltas, boundary_deltas], self.face_shape.dual) - @property + @cached_property def neighbor_distances(self): return vec_length(self._neighbor_offsets) @@ -255,108 +259,138 @@ def faces(self) -> 'Geometry': return Point(self.face_centers) @property - def vertices(self) -> Geometry: - return self._vertices - - @property - def vertex_connectivity(self) -> Tensor: - return self._vertex_connectivity + def connectivity(self) -> Tensor: + return self.element_connectivity - @property + @cached_property def element_connectivity(self) -> Tensor: - return self._element_connectivity + if self.element_rank == self.spatial_rank: + if is_sparse(self.face_areas): + return tensor_like(self.face_areas, True) + else: + return self.face_areas > 0 + else: # fallback with no boundaries + coo = to_format(self.elements, 'coo').numpy() + connected_elements = coo @ coo.T + connected_elements.data = np.ones_like(connected_elements.data) + element_connectivity = wrap(connected_elements, instance(self.elements), instance(self.elements).as_dual()) + return element_connectivity + + @cached_property + def vertex_connectivity(self) -> Tensor: + if isinstance(self.vertices, Graph): + return self.vertices.connectivity + if self.element_rank == self.spatial_rank: + return self._faces['vertex_connectivity'] + elif self.element_rank <= 2: + coo = to_format(self.elements, 'coo').numpy() + connected_points = coo.T @ coo # ToDo this also counts vertices not connected by a single line/face as long as they are part of the same element + if not np.all(connected_points.sum_(axis=1) > 0): + warnings.warn("some vertices have no element connection at all", RuntimeWarning) + connected_points.data = np.ones_like(connected_points.data) + vertex_connectivity = wrap(connected_points, instance(self.vertices), dual(self.elements)) + return vertex_connectivity + raise NotImplementedError @property def vertex_graph(self) -> Graph: - if isinstance(self._vertices, Graph): - return self._vertices + if isinstance(self.vertices, Graph): + return self.vertices assert self._vertex_connectivity is not None, f"vertex_graph not available because vertex_connectivity has not been computed" - return graph(self._vertices, self._vertex_connectivity) + return graph(self.vertices, self._vertex_connectivity) def filter_unused_vertices(self) -> 'Mesh': - coo = math.to_format(self._elements, 'coo').numpy() - has_element = np.asarray(coo.sum(0) > 0)[0] - new_index = np.cumsum(has_element) - 1 - new_index_t = wrap(new_index, dual(self._elements)) - has_element = wrap(has_element, instance(self._vertices)) + coo = to_format(self.elements, 'coo').numpy() + has_element = np.asarray(coo.sum_(0) > 0)[0] + new_index = np.cumsum_(has_element) - 1 + new_index_t = wrap(new_index, dual(self.elements)) + has_element = wrap(has_element, instance(self.vertices)) has_element_d = si2d(has_element) - vertices = self._vertices[has_element] + vertices = self.vertices[has_element] v_normals = self._vertex_normals[has_element_d] vertex_connectivity = None if self._vertex_connectivity is not None: - vertex_connectivity = math.stored_indices(self._vertex_connectivity).index.as_batch() + vertex_connectivity = stored_indices(self._vertex_connectivity).index.as_batch() vertex_connectivity = new_index_t[{dual: vertex_connectivity}].index.as_channel() - vertex_connectivity = math.sparse_tensor(vertex_connectivity, math.stored_values(self._vertex_connectivity), non_batch(self._vertex_connectivity).with_sizes(instance(vertices).size), False) - if isinstance(self._elements, CompactSparseTensor): - indices = new_index_t[{dual: self._elements._indices}] - elements = CompactSparseTensor(indices, self._elements._values, self._elements._compressed_dims.with_size(instance(vertices).volume), self._elements._indices_constant, self._elements._matrix_rank) + vertex_connectivity = sparse_tensor(vertex_connectivity, stored_values(self._vertex_connectivity), non_batch(self._vertex_connectivity).with_sizes(instance(vertices).size), False) + if isinstance(self.elements, CompactSparseTensor): + indices = new_index_t[{dual: self.elements._indices}] + elements = CompactSparseTensor(indices, self.elements._values, self.elements._compressed_dims.with_size(instance(vertices).volume), self.elements._indices_constant, self.elements._matrix_rank) else: - filtered_coo = coo_matrix((coo.data, (coo.row, new_index)), shape=(instance(self._elements).volume, instance(vertices).volume)) # ToDo keep sparse format - elements = wrap(filtered_coo, self._elements.shape.without_sizes()) - return Mesh(vertices, elements, self._element_rank, self._boundaries, self._center, self._volume, self._normals, self._face_centers, self._face_normals, self._face_areas, None, v_normals, vertex_connectivity, self._element_connectivity, self._max_cell_walk) - - @property - def elements(self): - return self._elements - - @property - def polygons(self): - raise NotImplementedError # ToDo return Tensor (elements, vertex_list:spatial) + filtered_coo = coo_matrix((coo.data, (coo.row, new_index)), shape=(instance(self.elements).volume, instance(vertices).volume)) # ToDo keep sparse format + elements = wrap(filtered_coo, self.elements.shape.without_sizes()) + return Mesh(vertices, elements, self.element_rank, self.boundaries, self._center, self._volume, self._normals, self.face_centers, self.face_normals, self.face_areas, None, v_normals, vertex_connectivity, self._element_connectivity, self._max_cell_walk) @property def volume(self) -> Tensor: - return self._volume + if isinstance(self.elements, CompactSparseTensor) and self.element_rank == 2: + if instance(self.vertices).volume > 0: + A, B, C, *_ = unstack(self.vertices.center[self.elements._indices], dual) + cross_area = vec_length(cross_product(B - A, C - A)) + fac = {3: 0.5, 4: 1}[dual(self.elements._indices).size] # tri, quad, ... + return fac * cross_area + else: + return zeros(instance(self.vertices)) # empty mesh + elif self.element_rank == self.spatial_rank: + vol_contributions = (self.face_centers.vector @ self.face_normals.vector) * self.face_areas + return sum_(vol_contributions, dual) / self.spatial_rank + raise NotImplementedError - @property - def element_rank(self): - return self._element_rank @property def normals(self) -> Tensor: - return self._normals + """Extrinsic element normal space. This is a 0D vector for solid elements and 1D for surface elements.""" + if isinstance(self.elements, CompactSparseTensor) and self.element_rank == 2: + corners = self.vertices[self.elements._indices] + assert dual(corners).size == 3, f"signed distance currently only supports triangles" + v1, v2, v3 = unstack(corners, dual) + return vec_normalize(cross_product(v2 - v1, v3 - v1)) + raise NotImplementedError @property def vertex_normals(self) -> Tensor: - return self._vertex_normals # dual dim + v_normals = mean(self.elements * self.normals, instance) # (~vertices,vector) + return vec_normalize(v_normals) @property def vertex_positions(self) -> Tensor: - return si2d(self._vertices.center) # dual dim + """Lists the vertex centers along the corresponding dual dim to `self.vertices.center`.""" + return si2d(self.vertices.center) def lies_inside(self, location: Tensor) -> Tensor: - idx = math.find_closest(self._center, location) + idx = find_closest(self._center, location) for i in range(self._max_cell_walk): idx, leaves_mesh, is_outside, *_ = self.cell_walk_towards(location, idx, allow_exit=i == self._max_cell_walk - 1) return ~(leaves_mesh & is_outside) def approximate_signed_distance(self, location: Union[Tensor, tuple]) -> Tensor: if self.element_rank == 2 and self.spatial_rank == 3: - closest_elem = math.find_closest(self._center, location) + closest_elem = find_closest(self._center, location) center = self._center[closest_elem] normal = self._normals[closest_elem] return plane_sgn_dist(center, normal, location) if self._center is None: raise NotImplementedError("Mesh.approximate_signed_distance only available when faces are built.") - idx = math.find_closest(self._center, location) + idx = find_closest(self._center, location) for i in range(self._max_cell_walk): idx, leaves_mesh, is_outside, distances, nb_idx = self.cell_walk_towards(location, idx, allow_exit=False) - return math.max(distances, dual) + return max(distances, dual) def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: if self.element_rank == 2 and self.spatial_rank == 3: - closest_elem = math.find_closest(self._center, location) + closest_elem = find_closest(self._center, location) center = self._center[closest_elem] normal = self._normals[closest_elem] - face_size = math.sqrt(self._volume) * 4 + face_size = sqrt(self._volume) * 4 size = face_size[closest_elem] sgn_dist = plane_sgn_dist(center, normal, location) delta = center - location # this is not accurate... - outward = math.where(abs(sgn_dist) < size, normal, math.normalize(delta)) + outward = where(abs(sgn_dist) < size, normal, vec_normalize(delta)) return sgn_dist, delta, outward, None, closest_elem - # idx = math.find_closest(self._center, location) + # idx = find_closest(self._center, location) # for i in range(self._max_cell_walk): # idx, leaves_mesh, is_outside, distances, nb_idx = self.cell_walk_towards(location, idx, allow_exit=False) - # sgn_dist = math.max(distances, dual) + # sgn_dist = max(distances, dual) # cell_normals = self.face_normals[idx] # normal = cell_normals[{dual: nb_idx}] # return sgn_dist, delta, normal, offset, face_index @@ -380,26 +414,26 @@ def cell_walk_towards(self, location: Tensor, start_cell_idx: Tensor, allow_exit closest_face_centers = self.face_centers[start_cell_idx] offsets = closest_normals.vector @ closest_face_centers.vector # this dot product could be cashed in the mesh distances = closest_normals.vector @ location.vector - offsets - is_outside = math.any(distances > 0, dual) - nb_idx = math.argmax(distances, dual).index[0] # cell index or boundary face index + is_outside = any(distances > 0, dual) + nb_idx = argmax(distances, dual).index[0] # cell index or boundary face index leaves_mesh = nb_idx >= instance(self).volume - next_idx = math.where(is_outside & (~leaves_mesh | allow_exit), nb_idx, start_cell_idx) + next_idx = where(is_outside & (~leaves_mesh | allow_exit), nb_idx, start_cell_idx) return next_idx, leaves_mesh, is_outside, distances, nb_idx - def sample_uniform(self, *shape: math.Shape) -> Tensor: + def sample_uniform(self, *shape: Shape) -> Tensor: raise NotImplementedError def bounding_radius(self) -> Tensor: - center = self._elements * self.center - vert_pos = rename_dims(self._vertices.center, instance, dual) - dist_to_vert = math.vec_length(vert_pos - center) - max_dist = math.max(dist_to_vert, dual) + center = self.elements * self.center + vert_pos = rename_dims(self.vertices.center, instance, dual) + dist_to_vert = vec_length(vert_pos - center) + max_dist = max(dist_to_vert, dual) return max_dist def bounding_half_extent(self) -> Tensor: - center = self._elements * self.center - vert_pos = rename_dims(self._vertices.center, instance, dual) - max_delta = math.max(abs(vert_pos - center), dual) + center = self.elements * self.center + vert_pos = rename_dims(self.vertices.center, instance, dual) + max_delta = max(abs(vert_pos - center), dual) return max_delta def bounding_box(self) -> 'BaseBox': @@ -407,60 +441,53 @@ def bounding_box(self) -> 'BaseBox': @property def bounds(self): - return Box(math.min(self._vertices.center, instance), math.max(self._vertices.center, instance)) + return Box(min(self.vertices.center, instance), max(self.vertices.center, instance)) def at(self, center: Tensor) -> 'Mesh': - if instance(self._elements) in center.shape: + if instance(self.elements) in center.shape: raise NotImplementedError("Setting Mesh positions only supported for vertices, not elements") - if dual(self._elements) in center.shape: - center = rename_dims(center, dual, instance(self._vertices)) - if instance(self._vertices) in center.shape: - vertices = self._vertices.at(center) - return mesh(vertices, self._elements, self._boundaries, build_faces=self._face_areas is not None) + if dual(self.elements) in center.shape: + center = rename_dims(center, dual, instance(self.vertices)) + if instance(self.vertices) in center.shape: + vertices = self.vertices.at(center) + return mesh(vertices, self.elements, self.boundaries) else: shift = center - self.bounds.center return self.shifted(shift) def shifted(self, delta: Tensor) -> 'Mesh': - if instance(self._elements) in delta.shape: + if instance(self.elements) in delta.shape: raise NotImplementedError("Shifting Mesh positions only supported for vertices, not elements") - if dual(self._elements) in delta.shape: - delta = rename_dims(delta, dual, instance(self._vertices)) - if instance(self._vertices) in delta.shape: - vertices = self._vertices.shifted(delta) - return mesh(vertices, self._elements, self._boundaries, build_faces=self._face_areas is not None) + if dual(self.elements) in delta.shape: + delta = rename_dims(delta, dual, instance(self.vertices)) + if instance(self.vertices) in delta.shape: + vertices = self.vertices.shifted(delta) + return mesh(vertices, self.elements, self.boundaries) else: # shift everything - vertices = self._vertices.shifted(delta) + # ToDo transfer cached properties + vertices = self.vertices.shifted(delta) center = self._center + delta - return Mesh(vertices, self._elements, self._element_rank, self._boundaries, center, self._volume, self._normals, self._face_centers, self._face_normals, self._face_areas, self._face_vertices, self._vertex_normals, self._vertex_connectivity, self._element_connectivity, self._max_cell_walk) + return Mesh(vertices, self.elements, self.element_rank, self.boundaries, center, self._volume, self._normals, self.face_centers, self.face_normals, self.face_areas, self.face_vertices, self._vertex_normals, self._vertex_connectivity, self._element_connectivity, self._max_cell_walk) def rotated(self, angle: Union[float, Tensor]) -> 'Geometry': raise NotImplementedError def scaled(self, factor: float | Tensor) -> 'Geometry': pivot = self.bounds.center - vertices = scale(self._vertices, factor, pivot) + vertices = scale(self.vertices, factor, pivot) center = scale(Point(self._center), factor, pivot).center - volume = self._volume * factor**self._element_rank if self._volume is not None else None + volume = self._volume * factor**self.element_rank if self._volume is not None else None face_areas = None - return Mesh(vertices, self._elements, self._element_rank, self._boundaries, center, volume, self._normals, self._face_centers, self._face_normals, face_areas, self._face_vertices, self._vertex_normals, self._vertex_connectivity, self._element_connectivity, self._max_cell_walk) + return Mesh(vertices, self.elements, self.element_rank, self.boundaries, center, volume, self._normals, self.face_centers, self.face_normals, face_areas, self.face_vertices, self._vertex_normals, self._vertex_connectivity, self._element_connectivity, self._max_cell_walk) def __getitem__(self, item): item: dict = slicing_dict(self, item) - assert not spatial(self._elements).only(tuple(item)), f"Cannot slice vertex lists ('{spatial(self._elements)}') but got slicing dict {item}" - assert not instance(self._vertices).only(tuple(item)), f"Slicing by vertex indices ('{instance(self._vertices)}') not supported but got slicing dict {item}" - cells = instance(self.shape).name - if cells in item and isinstance(item[cells], int): - item[cells] = slice(item[cells], item[cells] + 1) - vertices = self._vertices[item] - polygons = self._elements[item] - s = math.slice - return Mesh(vertices, polygons, self._element_rank, self._boundaries, self._center[item], self._volume[item], s(self._normals, item), - s(self._face_centers, item), s(self._face_normals, item), s(self._face_areas, item), s(self._face_vertices, item), - s(self._vertex_normals, item), s(self._vertex_connectivity, item), s(self._element_connectivity, item), self._max_cell_walk) - - -@math.broadcast + assert not spatial(self.elements).only(tuple(item)), f"Cannot slice vertex lists ('{spatial(self.elements)}') but got slicing dict {item}" + assert not instance(self.vertices).only(tuple(item)), f"Slicing by vertex indices ('{instance(self.vertices)}') not supported but got slicing dict {item}" + return getitem_dataclass(self, item, keepdims=[self.shape.instance.name, 'vector']) + + +@broadcast def load_su2(file_or_mesh: str, cell_dim=instance('cells'), face_format: str = 'csc') -> Mesh: """ Load an unstructured mesh from a `.su2` file. @@ -489,8 +516,8 @@ def load_su2(file_or_mesh: str, cell_dim=instance('cells'), face_format: str = ' return mesh_from_numpy(points, mesh.elements, boundaries, cell_dim=cell_dim, face_format=face_format) -@math.broadcast -def load_gmsh(file: str, boundary_names: Sequence[str] = None, cell_dim=instance('cells'), face_format: str = 'csc'): +@broadcast +def load_gmsh(file: str, boundary_names: Sequence[str] = None, periodic: str = None, cell_dim=instance('cells'), face_format: str = 'csc'): """ Load an unstructured mesh from a `.msh` file. @@ -499,6 +526,7 @@ def load_gmsh(file: str, boundary_names: Sequence[str] = None, cell_dim=instance Args: file: Path to `.su2` file. boundary_names: Boundary identifiers corresponding to the blocks in the file. If not specified, boundaries will be numbered. + periodic: cell_dim: Dimension along which to list the cells. This should be an instance dimension. face_format: Sparse storage format for cell connectivity. @@ -525,17 +553,17 @@ def load_gmsh(file: str, boundary_names: Sequence[str] = None, cell_dim=instance boundaries[boundary] = cell_block.data else: raise AssertionError(f"Illegal cell block of type {cell_block.type} for {dim}D mesh") - return mesh_from_numpy(points, elements, boundaries, cell_dim=cell_dim, face_format=face_format) + return mesh_from_numpy(points, elements, boundaries, periodic=periodic, cell_dim=cell_dim, face_format=face_format) -@math.broadcast +@broadcast def load_stl(file: str, face_dim=instance('faces')): import stl model = stl.mesh.Mesh.from_file(file) points = np.reshape(model.points, (-1, 3)) vertices, indices = np.unique(points, axis=0, return_inverse=True) indices = np.reshape(indices, (-1, 3)) - mesh = mesh_from_numpy(vertices, indices, element_rank=2, build_faces=False, cell_dim=face_dim) + mesh = mesh_from_numpy(vertices, indices, element_rank=2, cell_dim=face_dim) return mesh @@ -543,10 +571,7 @@ def mesh_from_numpy(points: Sequence[Sequence], polygons: Sequence[Sequence], boundaries: str | Dict[str, List[Sequence]] | None = None, element_rank: int = None, - build_faces=True, - build_vertex_connectivity=True, - build_normals = True, - normals=None, + periodic: str = None, cell_dim: Shape = instance('cells'), face_format: str = 'csc') -> Mesh: """ @@ -559,8 +584,6 @@ def mesh_from_numpy(points: Sequence[Sequence], E.g. `[(0, 1, 2)]` denotes a single triangle connecting points 0, 1, and 2. boundaries: An unstructured mesh can have multiple boundaries, each defined by a name `str` and a list of faces, defined by their vertices. The `boundaries` `dict` maps boundary names to a list of edges (point pairs) in 2D and faces (3 or more points) in 3D (not yet supported). - build_faces: Whether to extract face information from the given vertex, polygon and boundary information. - build_vertex_connectivity: Whether to build a connectivity matrix for vertex-vertex connections. cell_dim: Dimension along which to list the cells. This should be an instance dimension. face_format: Storage format for cell connectivity, must be one of `csc`, `coo`, `csr`, `dense`. @@ -569,33 +592,28 @@ def mesh_from_numpy(points: Sequence[Sequence], """ cell_dim = cell_dim.with_size(len(polygons)) points = np.asarray(points) - try: - elements_np = np.stack(polygons).astype(np.int32) - except ValueError: - vertex_count = math.to_int32(wrap([len(e) for e in polygons], cell_dim)) - max_len = vertex_count.max - elements_np = np.zeros((len(polygons), max_len), dtype=np.int32) - 1 - for i, element in enumerate(polygons): - elements_np[i, :len(element)] = element xyz = tuple('xyz'[:points.shape[-1]]) vertices = wrap(points, instance('vertices'), channel(vector=xyz)) - polygons = wrap(elements_np, cell_dim, spatial('vertex_index')) - if normals is not None: - normals = wrap(normals, cell_dim, channel(vector=xyz)) - return mesh(vertices, polygons, boundaries, element_rank=element_rank, build_faces=build_faces, build_vertex_connectivity=build_vertex_connectivity, build_normals=build_normals, face_format=face_format, normals=normals) + try: # if all elements have the same vertex count, we stack them + elements_np = np.stack(polygons).astype(np.int32) + elements = wrap(elements_np, cell_dim, spatial('vertex_index')) + except ValueError: + indices = np.concatenate(polygons) + vertex_count = np.asarray([len(e) for e in polygons]) + ptr = np.pad(np.cumsum(vertex_count), (1, 0)) + mat = csr_matrix((np.ones(indices.shape, dtype=bool), indices, ptr), shape=(len(polygons), len(points))) + elements = wrap(mat, cell_dim, instance(vertices).as_dual()) + return mesh(vertices, elements, boundaries, element_rank, periodic, face_format=face_format) -@math.broadcast(dims=batch) +@broadcast(dims=batch) def mesh(vertices: Geometry | Tensor, elements: Tensor, boundaries: str | Dict[str, List[Sequence]] | None = None, element_rank: int = None, - build_faces=True, - build_vertex_connectivity=True, - build_element_connectivity=True, - build_normals=True, - normals=None, - face_format: str = 'csc'): + periodic: str = None, + face_format: str = 'csc', + max_cell_walk: int = None): """ Create a mesh from vertex positions and vertex lists. @@ -607,8 +625,6 @@ def mesh(vertices: Geometry | Tensor, For multiple boundaries, pass a `dict` mapping group names `str` to lists of faces, defined by their vertices. The last entry can be `None` to group all boundary faces not explicitly listed before. The `boundaries` `dict` maps boundary names to a list of edges (point pairs) in 2D and faces (3 or more points) in 3D (not yet supported). - build_faces: Whether to extract face information from the given vertex, polygon and boundary information. - build_vertex_connectivity: Whether to build a connectivity matrix for vertex-vertex connections. face_format: Storage format for cell connectivity, must be one of `csc`, `coo`, `csr`, `dense`. Returns: @@ -618,171 +634,126 @@ def mesh(vertices: Geometry | Tensor, assert instance(vertices), f"vertices must have an instance dimension listing all vertices of the mesh but got {shape(vertices)}" if not isinstance(vertices, Geometry): vertices = Point(vertices) - if build_faces: - assert boundaries is not None, f"When build_faces=True, boundaries must be specified." if spatial(elements): # all elements have same number of vertices indices: Tensor = rename_dims(elements, spatial, instance(vertices).as_dual()) values = expand(1, non_batch(indices)) - elements = CompactSparseTensor(indices, values, instance(vertices).as_dual(), instance(elements)) + elements = CompactSparseTensor(indices, values, instance(vertices).as_dual(), True) assert instance(vertices).as_dual() in elements.shape, f"elements must have the instance dim of vertices {instance(vertices)} but got {shape(elements)}" if element_rank is None: if vertices.vector.size == 2: element_rank = 2 elif vertices.vector.size == 3: - min_vertices = math.sum(elements, instance(vertices).as_dual()).min + min_vertices = sum_(elements, instance(vertices).as_dual()).min element_rank = 2 if min_vertices <= 4 else 3 # assume tri or quad mesh else: raise ValueError(vertices.vector.size) - vertex_count = math.sum(elements, instance(vertices).as_dual()) - approx_center = (elements @ vertices.center) / vertex_count # --- build faces --- - if build_faces: - if element_rank == 2: - centers, normals, areas, boundary_slices, vertex_connectivity, face_vertices = build_faces_2d(vertices.center, elements, boundaries, face_format) - else: - raise NotImplementedError("Building faces currently only supported for 2D elements. Set build_faces=False to construct mesh") - normals_out = normals.vector * (centers - approx_center).vector > 0 - normals = math.where(normals_out, normals, -normals) - vol_contributions = centers.vector * normals.vector * areas / vertices.vector.size - volume = math.sum(vol_contributions, dual) - cell_centers = math.sum(centers * areas, dual) / math.sum(areas, dual) - return Mesh(vertices, elements, element_rank, boundary_slices, cell_centers, volume, None, centers, normals, areas, face_vertices, None, vertex_connectivity, None) - else: - vertex_connectivity = None - if build_vertex_connectivity: - coo = math.to_format(elements, 'coo').numpy() - connected_points = coo.T @ coo - if not np.all(connected_points.sum(axis=1) > 0): - warnings.warn("some vertices have no element connection at all", RuntimeWarning) - connected_points.data = np.ones_like(connected_points.data) - vertex_connectivity = wrap(connected_points, instance(vertices), dual(elements)) - element_connectivity = None - if build_element_connectivity: - coo = math.to_format(elements, 'coo').numpy() - connected_elements = coo @ coo.T - connected_elements.data = np.ones_like(connected_elements.data) - element_connectivity = wrap(connected_elements, instance(elements), instance(elements).as_dual()) - volume = None - if isinstance(elements, CompactSparseTensor) and element_rank == 2: - if instance(vertices).volume > 0: - A, B, C, *_ = unstack(vertices.center[elements._indices], dual) - cross_area = math.vec_length(math.cross_product(B - A, C - A)) - fac = {3: 0.5, 4: 1}[dual(elements._indices).size] # tri, quad, ... - volume = fac * cross_area - else: - volume = math.zeros(instance(vertices)) - if normals is None and build_normals: - normals = extrinsic_normals(vertices.center, elements) - v_normals = None - if build_normals: - v_normals = vertex_normals(elements, normals) - return Mesh(vertices, elements, element_rank, {}, approx_center, volume, normals, None, None, None, None, v_normals, vertex_connectivity, element_connectivity) - - -def build_faces_2d(vertices: Tensor, - polygons: Tensor, - boundaries: Union[str, Dict[str, List[Sequence]]], + periodic_dims = [] + if periodic is not None: + periodic_dims = [s.strip() for s in periodic.split(',') if s.strip()] + assert all(p in vertices.vector.item_names for p in periodic_dims), f"Periodic boundaries must be named after axes, e.g. {vertices.vector.item_names} but got {periodic}" + for base in periodic_dims: + assert base+'+' in boundaries and base+'-' in boundaries, f"Missing boundaries for periodicity '{base}'. Make sure '{base}+' and '{base}-' are keys in boundaries dict, got {tuple(boundaries)}" + return Mesh(vertices, elements, element_rank, boundaries, periodic_dims, face_format, max_cell_walk) + + +def build_faces_2d(vertices: Tensor, # (vertices:i, vector) + elements: Tensor, # (elements:i, ~vertices) + boundaries: Dict[str, Sequence], # vertex pairs + periodic: Sequence[str], # periodic dim names + vertex_mean: Tensor, face_format: str): - poly_by_face = {} # (v1, v2) -> poly_idx - poly1 = [] - poly2 = [] - points1 = [] - points2 = [] - from phiml.math._sparse import native_matrix - polygon_csr: csr_matrix = native_matrix(math.to_format(polygons, 'csr'), math.NUMPY) - # --- Find neighbor cells --- - for poly_idx in range(instance(polygons).size): - vert_indices = polygon_csr.indices[polygon_csr.indptr[poly_idx]:polygon_csr.indptr[poly_idx+1]] - n_vert = len(vert_indices) - for i in range(n_vert): - v1 = vert_indices[i] - v2 = vert_indices[(i+1) % n_vert] - face = (v1, v2) if v1 < v2 else (v2, v1) - if face in poly_by_face: - other_poly_idx = poly_by_face[face] - del poly_by_face[face] - poly1.append(poly_idx) - poly2.append(other_poly_idx) - points1.append(v1) - points2.append(v2) - else: - poly_by_face[face] = poly_idx - # --- Add boundary faces --- - b_poly1 = [] - b_poly2 = [] - b_points1 = [] - b_points2 = [] - boundary_idx = instance(polygons).size + """ + Given a list of vertices, elements and boundary edges, computes the element connectivity matrix and corresponding edge properties. + + Args: + vertices: `Tensor` representing list (instance) of vectors (channel) + elements: Sparse matrix listing all elements (instance). Each entry represents a vertex (dual) belonging to an element. + boundaries: Named sequences of edges (vertex pairs). + periodic: Which dims are periodic. + vertex_mean: Mean vertex position for each element. + face_format: Sparse matrix format to use for the element-element matrices. + """ + cell_dim = instance(elements).name + nb_dim = instance(elements).as_dual().name + boundaries = {k: wrap(v, 'line:i,vert:i=(start,end)') for k, v in boundaries.items()} + # --- Periodic: map duplicate vertices to the same index --- + vertex_id = np.arange(instance(vertices).size) + for dim in periodic: + lo_idx, up_idx = boundaries[dim+'-'], boundaries[dim+'+'] + for lo_i, up_i in zip(set(flatten(lo_idx)), set(flatten(up_idx))): + vertex_id[up_i] = lo_i # map periodic vertices to one index + el_coo = to_format(elements, 'coo').numpy().astype(np.int32) + el_coo.col = vertex_id[el_coo.col] + # --- Add virtual boundary elements for non-periodic boundaries --- boundary_slices = {} - nb_dim = instance(polygons).as_dual().name - if not isinstance(boundaries, dict): - boundaries = {boundaries: None} - for boundary_name, pair_list in boundaries.items(): - boundary_start_idx = boundary_idx - if pair_list is not None: - for v1, v2 in pair_list: - poly_idx = poly_by_face.get((v1, v2), None) - if poly_idx is None: - poly_idx = poly_by_face.get((v2, v1), None) - assert poly_idx is not None, f"Boundary edge between vertices {v1} and {v2} is not connected to any cell! Either add a connected polygon or remove it from the boundary '{boundary_name}'" - del poly_by_face[(v2, v1)] - b_points1.append(v2) - b_points2.append(v1) - else: - del poly_by_face[(v1, v2)] - b_points1.append(v1) - b_points2.append(v2) - b_poly1.append(poly_idx) - b_poly2.append(boundary_idx) - boundary_idx += 1 - else: # auto-fill rest - for (v1, v2), poly_idx in poly_by_face.items(): - b_points1.append(v1) - b_points2.append(v2) - b_poly1.append(poly_idx) - b_poly2.append(boundary_idx) - boundary_idx += 1 - poly_by_face.clear() - boundary_slices[boundary_name] = {nb_dim: slice(boundary_start_idx, boundary_idx)} - assert not poly_by_face, f"{len(poly_by_face)} edges are not marked and do not have a neighbor cell: {tuple(poly_by_face)}" - neighbor_count = boundary_idx - # --- wrap results as Φ-Flow tensors --- - poly_pairs = np.asarray([poly1 + poly2 + b_poly1, poly2 + poly1 + b_poly2]).T # include transpose of inner faces - face_dim = instance('faces') - indices = wrap(poly_pairs, face_dim, channel(vector=[instance(polygons).name, nb_dim])) - point_idx1 = wrap(points1 + points2 + b_points1, face_dim) - point_idx2 = wrap(points2 + points1 + b_points2, face_dim) - loc_points1 = vertices[{instance: point_idx1}] - loc_points2 = vertices[{instance: point_idx2}] - # --- Compute edge properties --- - delta = loc_points2 - loc_points1 - area = vec_length(delta) - center = (loc_points1 + loc_points2) / 2 - if channel(vertices).size == 2: - normal = stack([-delta[1], delta[0]], channel(vertices)) - normal /= vec_length(normal) - elif channel(vertices).size == 3: # Surface mesh in 3D - warnings.warn("Normals not yet supported for embedded 3D meshes. Using placeholder values.", RuntimeWarning, stacklevel=3) - normal = math.random_normal(instance(delta), channel(vertices)) # ToDo - # --- Faces --- - dual_poly_dim = dual(**{nb_dim: neighbor_count}) - area = sparse_tensor(indices, area, instance(polygons) & dual_poly_dim, format='coo' if face_format == 'dense' else face_format, indices_constant=True) - normal = tensor_like(area, normal, value_order='original') - center = tensor_like(area, center, value_order='original') - face_centers = to_format(center, face_format) - face_normals = to_format(normal, face_format) - face_areas = to_format(area, face_format) - # --- vertex-vertex connectivity --- - vert_pairs = stack([wrap(points1 + points2 + b_points1 + b_points2, instance('edges')), wrap(points2 + points1 + b_points2 + b_points1, instance('edges'))], channel(idx=[non_channel(vertices).name, nb_dim])) - vertex_connectivity = sparse_tensor(vert_pairs, expand(True, instance(vert_pairs)), non_channel(vertices) & dual(**{nb_dim: non_channel(vertices).size}), can_contain_double_entries=False, indices_sorted=False, indices_constant=True) - # --- vertex-face connectivity --- - vertex_pairs = stack([point_idx1, point_idx2], channel('face_vertices')) - face_vertices = tensor_like(area, vertex_pairs, value_order='original') - return face_centers, face_normals, face_areas, boundary_slices, vertex_connectivity, face_vertices + end = instance(elements).size + bnd_coo_idx, bnd_coo_vert = [el_coo.row], [el_coo.col] + for bnd_key, bnd_vertices in boundaries.items(): + if bnd_key[:-1] in periodic: + continue + bnd_vert = bnd_vertices.numpy(['line,vert']) + bnd_idx = np.arange(bnd_vertices.line.size).repeat(2) + end + bnd_coo_idx.append(bnd_idx) + bnd_coo_vert.append(bnd_vert) + boundary_slices[bnd_key] = {nb_dim: slice(end, end+bnd_vertices.line.size)} + end += bnd_vertices.line.size + bnd_coo_idx = np.concatenate(bnd_coo_idx) + bnd_coo_vert = vertex_id[np.concatenate(bnd_coo_vert)] + bnd_el_coo = coo_matrix((np.ones((bnd_coo_idx.size,), dtype=bool), (bnd_coo_idx, bnd_coo_vert)), shape=(end, instance(vertices).size)) + # --- Compute neighbor elements --- + num_shared_vertices: csr_matrix = el_coo @ bnd_el_coo.T + neighbor_filter, = np.where(num_shared_vertices.data == 2) + src_cell, nb_cell = num_shared_vertices.nonzero() + src_cell = src_cell[neighbor_filter] + nb_cell = nb_cell[neighbor_filter] + connected_elements_coo = coo_matrix((np.ones(src_cell.size, dtype=bool), (src_cell, nb_cell)), shape=num_shared_vertices.shape) + element_connectivity = wrap(connected_elements_coo, instance(elements).without_sizes() & dual) + element_connectivity = to_format(element_connectivity, face_format) + # --- Find vertices for each face pair using 4 alternating patterns: [0101...], [1010...], ["]+[010...], [101...]+["] --- + bnd_el_coo_v_idx = coo_matrix((bnd_coo_vert+1, (bnd_coo_idx, bnd_coo_vert)), shape=(end, instance(vertices).size)) + ptr = np.cumsum(np.asarray(el_coo.sum(1))) + first_ptr = np.pad(ptr, (1, 0))[:-1] + last_ptr = ptr - 1 + alt1 = np.arange(el_coo.data.size) % 2 + alt2 = (1 - alt1) + alt2[first_ptr] = alt1[first_ptr] + alt3 = (1 - alt1) + alt3[last_ptr] = alt1[last_ptr] + v_indices = [] + for alt in [alt1, (1-alt1), alt2, alt3]: + el_coo.data = alt + 1e-10 + alt_v_idx = (el_coo @ bnd_el_coo_v_idx.T) + v_indices.append(alt_v_idx.data[neighbor_filter].astype(np.int32)) + v_indices = np.sort(np.stack(v_indices, -1), axis=1) - 1 + # Cases: 0,i1,i2 | i1,i1,i2 | i1,i2,i2 | i1,i2,i1+i2 (0 is invalid, doubles are invalid) + # For [1-3]: If self > left and left != 0 and it is the first -> this is the second element. + first_index = np.argmax((v_indices[:, 1:] > v_indices[:, :-1]) & (v_indices[:, :-1] >= 0), 1) + v_indices = v_indices[np.arange(v_indices.shape[0]), np.stack([first_index, first_index+1])] + v_indices = wrap(v_indices, 'vert:i=(start,end),edge:i') + v_pos = vertices[v_indices] + if periodic: # map v_pos: closest to cell_center + cell_center = vertex_mean[wrap(src_cell, 'edge:i')] + bounds = bounding_box(vertices) + delta = PERIODIC.shortest_distance(cell_center - bounds.lower, v_pos - bounds.lower, bounds.size) + is_periodic = dim_mask(vertices.vector.item_names, periodic) + v_pos = where(is_periodic, cell_center + delta, v_pos) + # --- Compute face information --- + edge_dir = v_pos.vert['end'] - v_pos.vert['start'] + edge_center = .5 * (v_pos.vert['end'] + v_pos.vert['start']) + edge_len = vec_length(edge_dir) + normal = vec_normalize(stack([-edge_dir[1], edge_dir[0]], channel(edge_dir))) + # --- Wrap in sparse matrices --- + indices = wrap(np.stack([src_cell, nb_cell]), channel(index=(cell_dim, nb_dim)), 'edge:i') + edge_len = sparse_tensor(indices, edge_len, element_connectivity.shape, format='coo' if face_format == 'dense' else face_format, indices_constant=True) + normal = tensor_like(edge_len, normal, value_order='original') + edge_center = tensor_like(edge_len, edge_center, value_order='original') + vertex_connectivity = None + return edge_center, normal, edge_len, boundary_slices, vertex_connectivity def build_mesh(bounds: Box = None, - resolution=math.EMPTY_SHAPE, + resolution=EMPTY_SHAPE, obstacles: Union[Geometry, Dict[str, Geometry]] = None, method='quad', cell_dim: Shape = instance('cells'), @@ -816,61 +787,61 @@ def build_mesh(bounds: Box = None, if bounds is None: # **resolution_ specifies points assert not resolution, f"When specifying vertex positions, bounds and resolution will be inferred and must not be specified." resolution = spatial(**{dim: non_batch(x).volume for dim, x in resolution_.items()}) - 1 - vert_pos = math.meshgrid(**resolution_) + vert_pos = meshgrid(**resolution_) bounds = Box(**{dim: (x[0], x[-1]) for dim, x in resolution_.items()}) # centroid_x = {dim: .5 * (wrap(x[:-1]) + wrap(x[1:])) for dim, x in resolution_.items()} - # centroids = math.meshgrid(**centroid_x) + # centroids = meshgrid(**centroid_x) else: # uniform grid from bounds, resolution resolution = resolution & spatial(**resolution_) - vert_pos = math.meshgrid(resolution + 1) / resolution * bounds.size + bounds.lower + vert_pos = meshgrid(resolution + 1) / resolution * bounds.size + bounds.lower # centroids = UniformGrid(resolution, bounds).center dx = bounds.size / resolution - regular_size = math.min(dx, channel) + regular_size = min(dx, channel) vert_pos, polygons, boundaries = build_quadrilaterals(vert_pos, resolution, obstacles, bounds, regular_size * max_squish) if max_squish is not None: lin_vert_pos = pack_dims(vert_pos, spatial, instance('polygon')) corner_pos = lin_vert_pos[polygons] - min_pos = math.min(corner_pos, '~polygon') - max_pos = math.max(corner_pos, '~polygon') - cell_sizes = math.min(max_pos - min_pos, 'vector') + min_pos = min(corner_pos, '~polygon') + max_pos = max(corner_pos, '~polygon') + cell_sizes = min(max_pos - min_pos, 'vector') too_small = cell_sizes < regular_size * max_squish # --- remove too small cells --- removed = polygons[too_small] - removed_centers = math.mean(lin_vert_pos[removed], '~polygon') + removed_centers = mean(lin_vert_pos[removed], '~polygon') kept_vert = removed[{'~polygon': 0}] - vert_pos = math.scatter(lin_vert_pos, kept_vert, removed_centers) - vertex_map = math.range(non_channel(lin_vert_pos)) - vertex_map = math.scatter(vertex_map, rename_dims(removed, '~polygon', instance('poly_list')), expand(kept_vert, instance(poly_list=4))) + vert_pos = scatter(lin_vert_pos, kept_vert, removed_centers) + vertex_map = range(non_channel(lin_vert_pos)) + vertex_map = scatter(vertex_map, rename_dims(removed, '~polygon', instance('poly_list')), expand(kept_vert, instance(poly_list=4))) polygons = polygons[~too_small] polygons = vertex_map[polygons] boundaries = {boundary: vertex_map[edge_list] for boundary, edge_list in boundaries.items()} boundaries = {boundary: edge_list[edge_list[{'~vert': 'start'}] != edge_list[{'~vert': 'end'}]] for boundary, edge_list in boundaries.items()} # ToDo remove edges which now point to the same vertex def build_single_mesh(vert_pos, polygons, boundaries): - points_np = math.reshaped_numpy(vert_pos, [..., channel]) - polygon_list = math.reshaped_numpy(polygons, [..., dual]) + points_np = reshaped_numpy(vert_pos, [..., channel]) + polygon_list = reshaped_numpy(polygons, [..., dual]) boundaries = {b: edges.numpy('edges,~vert') for b, edges in boundaries.items()} return mesh_from_numpy(points_np, polygon_list, boundaries, cell_dim=cell_dim, face_format=face_format) - return math.map(build_single_mesh, vert_pos, polygons, boundaries, dims=batch) + return map(build_single_mesh, vert_pos, polygons, boundaries, dims=batch) def build_quadrilaterals(vert_pos, resolution: Shape, obstacles: Dict[str, Geometry], bounds: Box, min_size) -> Tuple[Tensor, Tensor, dict]: - vert_id = math.range_tensor(resolution + 1) + vert_id = range_tensor(resolution + 1) # --- obstacles: mask and boundaries --- boundaries = {} full_mask = expand(False, resolution) for boundary, obstacle in obstacles.items(): assert isinstance(obstacle, Geometry), f"all obstacles must be Geometry objects but got {type(obstacle)}" active_mask_vert = obstacle.approximate_signed_distance(vert_pos) > min_size - obs_mask_cell = math.convolve(active_mask_vert, expand(1, resolution.with_sizes(2))) == 0 # use all cells with one non-blocked vertex - math.assert_close(False, obs_mask_cell & full_mask, msg="Obstacles must not overlap. For overlapping obstacles, use union() to assign a single boundary.") - lo, up = math.shift(obs_mask_cell, (0, 1), padding=None) + obs_mask_cell = convolve(active_mask_vert, expand(1, resolution.with_sizes(2))) == 0 # use all cells with one non-blocked vertex + assert_close(False, obs_mask_cell & full_mask, msg="Obstacles must not overlap. For overlapping obstacles, use union() to assign a single boundary.") + lo, up = shift(obs_mask_cell, (0, 1), padding=None) face_mask = lo != up for dim, dim_mask in dict(**face_mask.shift).items(): face_verts = vert_id[{dim: slice(1, -1)}] start_vert = face_verts[{d: slice(None, -1) for d in resolution.names if d != dim}] end_vert = face_verts[{d: slice(1, None) for d in resolution.names if d != dim}] - mask_indices = math.nonzero(face_mask.shift[dim], list_dim=instance('edges')) + mask_indices = nonzero(face_mask.shift[dim], list_dim=instance('edges')) edges = stack([start_vert[mask_indices], end_vert[mask_indices]], dual(vert='start,end')) boundaries.setdefault(boundary, []).append(edges) # edge_list = [(s, e) for s, e, m in zip(start_vert, end_vert, dim_mask) if m] @@ -880,7 +851,7 @@ def build_quadrilaterals(vert_pos, resolution: Shape, obstacles: Dict[str, Geome # --- outer boundaries --- def all_faces(ids: Tensor, edge_mask: Tensor, dim): assert ids.rank == 1 - mask_indices = math.nonzero(~edge_mask, list_dim=instance('edges')) + mask_indices = nonzero(~edge_mask, list_dim=instance('edges')) start_vert = ids[:-1] end_vert = ids[1:] return stack([start_vert[mask_indices], end_vert[mask_indices]], dual(vert='start,end')) @@ -889,7 +860,7 @@ def all_faces(ids: Tensor, edge_mask: Tensor, dim): boundaries[dim+'-'] = all_faces(vert_id[{dim: 0}], full_mask[{dim: 0}], dim) boundaries[dim+'+'] = all_faces(vert_id[{dim: -1}], full_mask[{dim: -1}], dim) # --- cells --- - cell_indices = math.nonzero(~full_mask) + cell_indices = nonzero(~full_mask) if resolution.rank == 2: d1, d2 = resolution.names c1 = vert_id[{d1: slice(0, -1), d2: slice(0, -1)}] @@ -901,32 +872,21 @@ def all_faces(ids: Tensor, edge_mask: Tensor, dim): else: raise NotImplementedError(resolution.rank) # --- push vertices out of obstacles --- - ext_mask = math.pad(~full_mask, {d: (0, 1) for d in resolution.names}, False) - has_cell = math.convolve(ext_mask, expand(1, resolution.with_sizes(2)), math.extrapolation.ZERO) # vertices without a cell could be removed to improve memory/cache efficiency + ext_mask = pad(~full_mask, {d: (0, 1) for d in resolution.names}, False) + has_cell = convolve(ext_mask, expand(1, resolution.with_sizes(2)), extrapolation.ZERO) # vertices without a cell could be removed to improve memory/cache efficiency for obstacle in obstacles.values(): shifted_verts = obstacle.push(vert_pos) - vert_pos = math.where(has_cell, shifted_verts, vert_pos) + vert_pos = where(has_cell, shifted_verts, vert_pos) vert_pos = bounds.push(vert_pos, outward=False) return vert_pos, polygons, boundaries def tri_points(mesh: Mesh): - corners = mesh.vertices.center[mesh._elements._indices] + corners = mesh.vertices.center[mesh.elements._indices] assert dual(corners).size == 3, f"signed distance currently only supports triangles" return unstack(corners, dual) -def extrinsic_normals(vertices: Tensor, elements: Tensor): - corners = vertices[elements._indices] - assert dual(corners).size == 3, f"signed distance currently only supports triangles" - A, B, C = unstack(corners, dual) - return math.vec_normalize(math.cross_product(B-A, C-A)) - - -def vertex_normals(elements: Tensor, face_normals: Tensor): - v_normals = math.mean(elements * face_normals, instance) # (~vertices,vector) - return math.vec_normalize(v_normals) - def face_curvature(mesh: Mesh): v_normals = mesh.elements * si2d(mesh.vertex_normals) @@ -939,15 +899,15 @@ def face_curvature(mesh: Mesh): n1, n2, n3 = unstack(v_normals._values, dual) dn1, dn2, dn3 = n2-n1, n3-n2, n1-n3 curvature_tensor = .5 / mesh.volume * (e1 * dn1 + e2 * dn2 + e3 * dn3) - scalar_curvature = math.sum([curvature_tensor[{'vector': d, '~vector': d}] for d in mesh.vector.item_names], '0') + scalar_curvature = sum_([curvature_tensor[{'vector': d, '~vector': d}] for d in mesh.vector.item_names], '0') return curvature_tensor, scalar_curvature - # vec_curvature = math.max(v_normals, dual) - math.min(v_normals, dual) # positive / negative + # vec_curvature = max(v_normals, dual) - min(v_normals, dual) # positive / negative def save_tri_mesh(file: str, mesh: Mesh, **extra_data): - v = math.reshaped_numpy(mesh.vertices.center, [instance, 'vector']) - if isinstance(mesh._elements, CompactSparseTensor): - f = math.reshaped_numpy(mesh._elements._indices, [instance, dual]) + v = reshaped_numpy(mesh.vertices.center, [instance, 'vector']) + if isinstance(mesh.elements, CompactSparseTensor): + f = reshaped_numpy(mesh.elements._indices, [instance, dual]) else: raise NotImplementedError print(f"Saving triangle mesh with {v.shape[0]} vertices and {f.shape[0]} faces to {file}") @@ -955,15 +915,15 @@ def save_tri_mesh(file: str, mesh: Mesh, **extra_data): np.savez(file, vertices=v, faces=f, f_dim=instance(mesh).name, vertex_dim=instance(mesh.vertices).name, vector=mesh.vector.item_names, has_extra_data=bool(extra_data), **extra_data) -@math.broadcast -def load_tri_mesh(file: str, convert=False, load_extra=(), build_vertex_connectivity=True, build_normals=True, build_element_connectivity=True) -> Mesh | Tuple[Mesh, ...]: +@broadcast +def load_tri_mesh(file: str, convert=False, load_extra=()) -> Mesh | Tuple[Mesh, ...]: data = np.load(file, allow_pickle=bool(load_extra)) f_dim = instance(str(data['f_dim'])) vertex_dim = instance(str(data['vertex_dim'])) vector = channel(vector=[str(d) for d in data['vector']]) faces = tensor(data['faces'], f_dim, spatial('vertex_list'), convert=convert) vertices = tensor(data['vertices'], vertex_dim, vector, convert=convert) - m = mesh(vertices, faces, build_faces=False, build_vertex_connectivity=build_vertex_connectivity, build_normals=build_normals, build_element_connectivity=build_element_connectivity) + m = mesh(vertices, faces) if not load_extra: return m extra = [data[e] for e in load_extra] @@ -971,7 +931,7 @@ def load_tri_mesh(file: str, convert=False, load_extra=(), build_vertex_connecti return m, *extra -@math.broadcast(dims=batch) +@broadcast(dims=batch) def decimate_tri_mesh(mesh: Mesh, factor=.1, target_max=10_000,): if isinstance(mesh, NoGeometry): return mesh @@ -979,10 +939,10 @@ def decimate_tri_mesh(mesh: Mesh, factor=.1, target_max=10_000,): return mesh import pyfqmr mesh_simplifier = pyfqmr.Simplify() - vertices = math.reshaped_numpy(mesh.vertices.center, [instance, 'vector']) - faces = math.reshaped_numpy(mesh.elements._indices, [instance, dual]) + vertices = reshaped_numpy(mesh.vertices.center, [instance, 'vector']) + faces = reshaped_numpy(mesh.elements._indices, [instance, dual]) target_count = min(target_max, int(round(instance(mesh).volume * factor))) mesh_simplifier.setMesh(vertices, faces) mesh_simplifier.simplify_mesh(target_count=target_count, aggressiveness=7, preserve_border=False) vertices, faces, normals = mesh_simplifier.getMesh() - return mesh_from_numpy(vertices, faces, normals=normals, build_faces=False, build_vertex_connectivity=mesh._vertex_connectivity is not None, cell_dim=instance(mesh)) + return mesh_from_numpy(vertices, faces, cell_dim=instance(mesh))