-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclassificationExpts.py
240 lines (166 loc) · 10.3 KB
/
classificationExpts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import sys
import argparse
import utilities
import metrics
import sklearn as skl
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
import pdb
class Expts:
def __init__(self, data, output_folder, data_aug=True, classifier=None, random_state=0):
self.classifier = classifier
self.data = data
self.random_state = random_state #set this to None for randomizing the data shuffle and fold split.
self.paper_metrics_only = True
self.output_folder = output_folder
self.data_aug = data_aug
#feature related parameters
self.srp_dict = dict(res=data.resolution, nsegs=data.L)
#for cross validation expt.
self.folds = 5
if classifier is None:
self.classifier = SVC(kernel='linear', C=1, random_state=self.random_state)
def run_train_and_save_classifier(self, save_classifier=True, locs_in=["SAB"], data_split_ratio=0.15):
locations = utilities.get_locations(locs_in)
print(" \n\n--- Train a classifier for locations: {}\n".format(locations))
print("Data split into train and test set at ratio: {}\n".format(data_split_ratio))
data_in = self.data.get_data()
data_in = data_in[data_in["Environment"].isin(locations)]
label_encoder, pipeline = utilities.prepare_skl_interface(data_in, self.classifier)
# stratified split data into train and test - stratification considers location and the class labels
temp_df = data_in[['Environment', 'Recording ID', 'Class']]
temp_df = temp_df.drop(temp_df[temp_df['Class'] == 'front'].index) # just to avoid repeated Recording IDs
train_bags, test_bags = train_test_split(temp_df,
test_size=data_split_ratio,
random_state=self.random_state,
stratify=temp_df[['Environment', 'Class']])
# check if samples from same recordings are present in both train and test
for bag in list(test_bags['Recording ID']):
if bag in list(train_bags['Recording ID']):
print("Error: {}".format(bag))
train_data = data_in[data_in['Recording ID'].isin(train_bags['Recording ID'])]
test_data = data_in[data_in['Recording ID'].isin(test_bags['Recording ID'])]
accuracy, conf_mat = utilities.train_and_test(train_data, test_data, pipeline, label_encoder, self.srp_dict,
save_cls=save_classifier, out_folder=self.output_folder)
all_metrics = {"overall_accuracy" : (accuracy, 0),
"per_class_accuracy": (metrics.getPCaccuracy(conf_mat), np.zeros(4)),
"per_class_precision": (metrics.getPCPrecision(conf_mat), np.zeros(4)),
"per_class_recall": (metrics.getPCRecall(conf_mat), np.zeros(4)),
"per_class_iou": (metrics.getPCIoU(conf_mat), np.zeros(4))}
metrics.print_metrics(all_metrics, self.paper_metrics_only)
def run_cross_validation(self, locs_in=["SAB"]):
print(" \n\n--- Cross Validation for locations: {}\n".format(locs_in))
locations = utilities.get_locations(locs_in)
data_in = self.data.get_data()
data_in = data_in[data_in["Environment"].isin(locations)]
label_encoder, pipeline = utilities.prepare_skl_interface(data_in, self.classifier)
# shuffle with random seed if specified
if self.random_state is not None:
data_in_shuffled = skl.utils.shuffle(data_in, random_state=self.random_state)
else:
data_in_shuffled = skl.utils.shuffle(data_in)
# get metrics
output_metrics = utilities.cross_validation(pipeline, self.folds, data_in_shuffled, label_encoder, self.srp_dict, data_aug=self.data_aug)
metrics.print_metrics(output_metrics, self.paper_metrics_only)
def run_generalisation(self, train_locs=["DA"], test_locs=["DB"], save_classifier=True):
print("\n\n --- Generalization across locations --- \n")
print("Locations in train set: {}".format(train_locs))
print("Locations in test set: {}".format(test_locs))
train_locs = utilities.get_locations(train_locs)
test_locs = utilities.get_locations(test_locs)
data_in = self.data.get_data()
label_encoder, pipeline = utilities.prepare_skl_interface(data_in, self.classifier)
train_data = data_in[data_in["Environment"].isin(train_locs)]
test_data = data_in[data_in["Environment"].isin(test_locs)]
accuracy, conf_mat = utilities.train_and_test(train_data, test_data, pipeline, label_encoder, self.srp_dict, save_cls=save_classifier, out_folder=self.output_folder)
all_metrics = {"overall_accuracy" : (accuracy, 0),
"per_class_accuracy": (metrics.getPCaccuracy(conf_mat), np.zeros(4)),
"per_class_precision": (metrics.getPCPrecision(conf_mat), np.zeros(4)),
"per_class_recall": (metrics.getPCRecall(conf_mat), np.zeros(4)),
"per_class_iou": (metrics.getPCIoU(conf_mat), np.zeros(4))}
metrics.print_metrics(all_metrics, self.paper_metrics_only)
def parseArgs():
class ExtractorArgsParser(argparse.ArgumentParser):
def error(self, message):
self.print_help()
sys.exit(2)
def format_help(self):
formatter = self._get_formatter()
formatter.add_text(self.description)
formatter.add_usage(self.usage, self._actions,
self._mutually_exclusive_groups)
for action_group in self._action_groups:
formatter.start_section(action_group.title)
formatter.add_text(action_group.description)
formatter.add_arguments(action_group._group_actions)
formatter.end_section()
formatter.add_text(self.epilog)
return formatter.format_help()
usage = """
To run cross validation experiment:
python classificationExpts.py --run_cross_val --locs_list DAB DA DB
To run generalization experiment:
python classificationExpts.py --run_gen --train_locs_list SA --test_locs_list SB --save_cls
To train and save a classifier on a data subset:
python classificationExpts.py --train_save_cls --locs_list SAB --split_ratio 0.15 --save_cls
"""
parser = ExtractorArgsParser(description='Run classification experiments on the acoustic_data', usage=usage)
parser.add_argument('--input', dest='input', default=None, help='Path to extracted samples')
parser.add_argument('--output', dest='output', default=None, help='Output folder to store the saved classifier.')
parser.add_argument('--extract_feats', dest='extract_feats', action='store_true',
help='If specified, features are extracted rather than read from a csv file stored in ./config folder')
parser.add_argument('--save_feats', dest='save_feats', action='store_true',
help='If specified, features are extracted are saved into ./config folder')
parser.add_argument('--run_cross_val', action='store_true', help='Runs the cross validation experiment. (Table 3 in the paper)')
parser.add_argument('--locs_list', nargs="+", default=["DAB", "DA", "DB"], help='List of Location IDs to run cross validation / train and test a classifier. To specify multiple subsets, separate the arguments with a space e.g --locs_list SA1 SA2')
parser.add_argument('--run_gen', action='store_true', help='Runs the generalization experiment. (Table 4 in the paper)')
parser.add_argument('--train_locs_list', nargs="+", default=["SA"], help='List of locations in the training set')
parser.add_argument('--test_locs_list', nargs="+", default=["SB"], help='List of locations in the training set')
parser.add_argument('--train_save_cls', action='store_true', help='Train a classifier on specified subset and optionally save it.')
parser.add_argument('--split_ratio', default=0.15, type=float, help='Ratio to split the data into train and test')
parser.add_argument('--save_cls', action='store_true', help='Save the trained classifier.')
#hyperparameters
parser.add_argument('--L', default=2, type=int, help='Number of segments')
parser.add_argument('--C', default=1, type=float, help='Classifier regularization')
parser.add_argument('--no_data_aug', action='store_true', help='Disable data augmentation')
parser.add_argument('--seed', default=0, type=int, help='Random seed')
if len(sys.argv)==1:
parser.print_help()
sys.exit(2)
try:
parsed = parser.parse_args()
except:
sys.exit(2)
return parsed
def main():
parsed = parseArgs()
print("-- Hyperparameters -- \n")
print("Seed: {}".format(parsed.seed))
print("L: {}".format(parsed.L))
print("C: {}".format(parsed.C))
print("Data Aug: {}".format(not parsed.no_data_aug))
# create the data object
data = utilities.AudioData(L=parsed.L)
if parsed.extract_feats:
if parsed.input is None:
raise ValueError("Please specify path to extracted one second audio samples at the flag --input.")
else:
data.extract_data(data_path=parsed.input, save=parsed.save_feats)
else:
data.read_csv()
# initialize the classifier
classifier = SVC(kernel='linear', C=parsed.C, random_state=parsed.seed, probability=True)
expts = Expts(data, parsed.output, classifier=classifier, random_state=parsed.seed, data_aug=(not parsed.no_data_aug))
# train and save classifier
if parsed.train_save_cls:
expts.run_train_and_save_classifier(locs_in=parsed.locs_list, save_classifier=parsed.save_cls, data_split_ratio=parsed.split_ratio)
# cross validation per location specified
if parsed.run_cross_val:
for loc in parsed.locs_list:
expts.run_cross_validation([loc])
# generalization experiment
if parsed.run_gen:
expts.run_generalisation(train_locs=parsed.train_locs_list, test_locs=parsed.test_locs_list, save_classifier=parsed.save_cls)
if __name__ == "__main__":
main()